泰勒定理
 在科學計算上的應用

王 偉 仲
 國立高雄大學應用數學系

國際數學奧林匹亞競賽第四次培訓營，高雄大學，2004年6月19日

Isn＇t it Saturday？

But, I guess you want to be the...

So, let's go!

Outline

- Brief introduction to scientific computation
- Taylor's theorem
- The theorem
- Finite difference
- Initial value problem
- Boundary value problem
- Newton's method for root finding

What is Scientific Computing?

- Scientific methods:
- Theory
- Experiment
- Computation
- Give me a number
- How good is the number?

What is Scientific Computing？（cont．）

- 計算科學與
- 各科學與工程領域 （實際應用問題）
－應用數學
（知識，技巧與方法）
－以及資訊科學 （計算機軟硬體）
彼此之間也都有相當重疊
交互應用

What is Scientific Computing？（cont．）

－Being able to automate calculations with a computer
－Design and analyze algorithms for solving mathematical problems that arise in computational science and engineering

Numerical analysis，Computational methods

What Is Scientific Computing? (cont.)

- Deals with quantities that are continuous rather than discrete
- Concerned with approximation and their effects
- Approximations are used not just by choice: they are inevitable in most problems

Numerical and Symbolic Calculation

Numerical	Symbolic
Involves numbers directly	Numbers are represented in an equation
$3.4^{2}-0.79=10.77$	$\left(x^{2}-1\right) /(x+1)=x-1$
$3.14159265358979 \ldots$	π
$0.250+0.333=0.583$	$1 / 4+1 / 3=7 / 12(=0.5833 \ldots)$

Numerical and Symbolic (cont.)

Numerical	Symbolic
Programming language (Fortran, C, C++, Java, Matlab)	Computer programs (Maple, Mathematica, Matlab)
Quicker / Approximation	Slower / Exact
Main focus in this course	Highlight the fundamental behavior
Numbers are represented as binary (0 or 1)	

Numerical Methods, Algorithms, and Computer Codes

- The goal is to find a solution of a real world problem numerically.

Numerical methods is a mathematical description of the introduction of a idea.

- Algorithm is a precise sequence of actions taken to obtain a desired result.

Numerical Methods, Algorithms, and Computer Codes (cont.)

- Computer code is a translation of an algorithm into a sequence of statements in a particular computer language.

An Example

- What is the surface area of the earth?

A Solution

- Earth is modeled as sphere, an idealization of its true shape
- Mathematics gives formula $A=4{ }^{\wedge} R^{2}$
- Value of radius is based on empirical measurements and previous computation

A Solution (cont.)

- Value for ${ }^{\wedge}$ requires truncating an infinite process
- Input data and results for arithmetic operations are rounded in computer
- Answer the question "What is the error of the computed solution?"

General Strategy

- Replace difficult problem by easier one that has same or closely related solutions.

\author{

- Complicated -> Simple
 - Nonlinear -> Linear
 - Infinite
 -> Finite
 - Differential -> Algebraic
}

An Example of "Simplified"

KISS: Keep It Simple, Students.

Ten Outstanding Engineering Achievements (1964-1989)

- National Academy of Engineering, 1989

1. Microprocessor
2. Moon landing
3. Application satellites
4. Computer-aided design and manufacturing
5. Jumbo jet
6. Advanced composite materials
7. Computerized axial; tomography
8. Genetic engineering
9. Lasers
10. Optical fibers

Grand Challenges

1．Prediction of weather，climate，and global change

2．Computerized speech understanding
3．Human genome project
4．Improvements in vehicle performance

核磁共振影像

風流

震動中的波

－In Matlab：demo＞Graphics＞Vibrating logo

Butterfly Effect

- Ed Lorenz's paper (1963) reads "One meteorologist remarked that if the theory were correct, one flap of a seagull's wings would be enough to alter the course of the weather forever."
- The talk given at American Association for the Advancement of Science in Washington, D.C. (1972) "Predictability: Does the Flap of a Butterfly Wings in Brazil set off a Tornado in Texas?"

Lorenz's Equations

- First order coupled equation
- Commonly used constants
- $a=10, r=28, b=8 / 3$,
- $a=28, r=46.92, b=4$
- Initial of x, y, z

混沌

－In Matlab：demo＞Graphics＞Lorenz attractor animation
－混沌是非週期性之物理系統的演化模式。系統的演化對初始條件非常敏感。
－實例：勞倫茲吸引子
（Lorenz Attractor）

生物現象

－人眼可輕易偵測移動中的物體，但難以分辨同一物體的靜止狀態

對動物來說，這是重要的生存本能 （掠奪，捕食，逃避）
－範例：隱藏的形狀
In Matlab：demo＞More Examples＞Hiden objects in motion

Taylor's Theorem

Brook Taylor (1685-1731)

Taylor was an ingenious and productive British mathematician.

He attended St. John's College in Cambridge, and shortly after his graduation was elected a Fellow of the Royal Society.
§ 1.1 Basic tools of calculus
The 1.1 (Taylor's Theorem with Remainder)

- It represents general functions as polynomials with a known, specified, brundable enos.
- Polynomials: easy to take derivatives, integrals....

Let $f(x) \in C^{n+1}$ on $[a, b]$. Then

$$
\begin{aligned}
f(x) & =P_{n}(x)+R_{n}(x) \\
& =\sum_{k=0}^{n} \frac{\left(x-x_{0}\right)^{k}}{k!} f^{(k)}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{n+1}}{(n+1)!} f^{(n+1)}\left(\xi_{k}\right), \mid \xi x \xi_{x} \text { between } x_{0}
\end{aligned}
$$

DIY: For $n=3$

$$
\Rightarrow f(x)=?
$$

0IY: Expand $f(x+h)$ in a Taylor series, about the pout $x_{0}=x$.
(p,q)

$$
f(x+h)=?
$$

Expands at X_{0}
Examples:
(0.3) (1) $e^{x}=$
(2) $\sin x=$
(3) $\cos x=$

Question: How to evaluate the value of e^{x} for $x \in[-1,1]$ with
enow $\leq 10^{-6}$? (Hint: $p .3, p .4$)
(Suppose we can do only $t, \ldots, *, 1$.)
Question. What can you say about Fig 1.1 on p.5 ?
Quectorn. Hin can you improve the accuracy of $p_{2}(x) \approx e^{x}$ at $x=1$?

Matlab plot fig h mp. 5.
IMO Training Camp
NUK, 2004_06_19

$$
\begin{aligned}
e^{x} & =1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots+\frac{1}{n!} x^{n}+\frac{1}{(n+1)!} x^{n+1} e^{\xi_{1}} \\
& =\sum_{k=0}^{n} \frac{1}{k!} x^{k}+R_{n}(x), \\
\sin x & =x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}+\cdots+\frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}+\frac{(-1)^{n+1}}{(2 n+3)!} x^{2 n+3} \cos \xi_{x} \\
& =\sum_{k=0}^{n} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}+R_{n}(x), \\
\cos x & =1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}+\cdots+\frac{(-1)^{n}}{(2 n)!} x^{2 n}+\frac{(-1)^{n+1}}{(2 n+2)!} x^{2 n+2} \cos \xi_{x} \\
& =\sum_{k=0}^{n} \frac{(-1)^{k}}{(2 k)!} x^{2 k}+R_{n}(x) .
\end{aligned}
$$

Finite difference to the derivative

§ 22 Oifference appriximations to the dervative Gonl. to evalute $f^{\prime}(x)$
Colcalus: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}$ for smalt h

Tay(or: $\quad f(x+h)=f(x)+h f(x)+\frac{h^{2}}{2} f(x)+\frac{h^{3}}{6} f^{\prime \prime \prime}(k)$
$\Rightarrow f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}+\frac{1}{2} h f^{*}\left(f_{x}\right) \quad 7^{- \text {Que }- \text { sided differech }} \frac{\square}{x}$
$=\frac{f(x+h)-f(x)}{h}+O(h) \quad-\frac{\text { First ader }}{\text { appraximaton }}$ frisits difuences

TABLE 2.1 Example of Derivative Approximation to $f(x)=e^{x}$ atx $=1$

h^{-1}	$D_{1}(h)$	$E_{1}(h)=f^{\prime}(1)-D_{1}(h)$	$D_{2}(h)$	$E_{2}(h)=f^{\prime}(1)-D_{2}(h)$
2	3.526814461	$-0.8085327148 \mathrm{E}+00$	2.832967758	$-0.1146860123 \mathrm{E}+00$
4	3.088244438	$-0.3699626923 \mathrm{E}+00$	2.746685505	$-0.2840375900 \mathrm{E}-01$
8	2.895481110	$-0.1771993637 \mathrm{E}+00$	2.725366592	$-0.7084846497 \mathrm{E}-02$
16	2.805027008	$-0.8674526215 \mathrm{E}-01$	2.720052719	$-0.1770973206 \mathrm{E}-02$
32	2.761199951	$-0.4291820526 \mathrm{E}-01$	2.718723297	$-0.4415512085 \mathrm{E}-03$
64	2.739639282	$-0.2135753632 \mathrm{E}-01$	2.718391418	$-0.1096725464 \mathrm{E}-03$
128	2.728942871	$-0.1066112518 \mathrm{E}-01$	2.718307495	$-0.2574920654 \mathrm{E}-04$

TABLE 2.2 Illustration of Rounding Error in Derivative
Approximations, Using $f(x)=e^{x}, x=1$

h^{-1}	$D_{2}(h)$	$E_{2}(h)=f^{\prime}(1)-D_{2}(h)$	$E_{2}(h / 2) / E_{2}(h)$
2	2.832967758	$-0.1146860123 \mathrm{E}+00$	NA
4	2.746685505	$-0.2840375900 \mathrm{E}-01$	4.038
8	2.725366592	$-0.7084846497 \mathrm{E}-02$	4.009
16	2.720052719	$-0.1770973206 \mathrm{E}-02$	4.001
32	2.718723297	$-0.4415512085 \mathrm{E}-03$	4.011
64	2.718391418	$-0.1096725464 \mathrm{E}-03$	4.026
128	2.718307495	$-0.2574920654 \mathrm{E}-04$	4.259
256	2.71829236	$-0.1049041748 \mathrm{E}-04$	2.455
512	2.718261719	$0.2002716064 \mathrm{E}-04$	-0.524

- What's wrong for $h=\frac{1}{256}$ that $\frac{E_{2}(h / 2)}{E_{2}(h)}=2.455 \approx 4$?

To estimate the error, we considered manly "mathematical error" only. Now we consider also the "rounding error". $L \sim$ means computed $f^{\prime}(x)-\tilde{D}_{2}(h)=f^{\prime}(x)-\frac{\tilde{f}(x+h)-\tilde{f}(x-h)}{2 h}$

$$
=f^{\prime}(x)-\frac{f(x+h)-f(x-h)}{2 h}+\frac{f(x+h)-f(x-h)}{2 h}-\frac{\tilde{f}(x+h)-\tilde{f}(x-h)}{2 h}
$$

(A)
(B)

Find a balance point.

Euler's Method for Initial Value Problem (IVF)

§2.3 Euler's method for initial value problems

- Initial value problems for ordinary differential equations.

$$
\left\{\begin{array}{l}
y^{\prime}=f\left(t_{1}, y\right) \\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

- Use the finite difference to approximate y^{\prime}.

$$
\begin{aligned}
& \quad \frac{y(t+h)-y(t)}{h}=f(t, y(t))+\underbrace{\frac{1}{2} h y^{\prime \prime}\left(t_{n}\right)}_{o(h)} \\
& \Rightarrow y(t+h)=y(t)+h \cdot f(t, y(t))+o\left(h^{2}\right) \\
& \text { - Numerical algorithm: (1) } t_{n}=t_{0}+n h \quad(t: \text { grid, h: grid size) } \\
& \text { (Euler's Method) (2) } y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right) \\
& \text { (3) Goo step (1) }
\end{aligned}
$$

$$
\text { Example } 2.2(p .50)
$$

$$
\left\{\begin{aligned}
& y^{\prime}=-y+\sin t \Rightarrow \text { Exact soln: } y(t)=\frac{3}{2} e^{-t}+\frac{1}{2}(\sin t-\cos t) \\
& y(0)=1
\end{aligned}\right.
$$

- See Fig 2.4 m 0.51

DIY - Write a Matlab codes generating similar results m Table 2.5, 2.6 of Fig 2.4.

WAKE UP!!

Newton's Method
§3.2 Newton's Method

- A claseic algurithon for soot finding
- An application of the devirative of a fuction $\left(f^{\prime}\right)$
- Used by Nestos in 1669 (330 years ago)
- Ever carbier by Joseph Raphson. (yeaw?)
- Really emly ty Batylonians. (Year ?)

Man thea I: Geometric

- Use the tangent live approximation to the function f at the point $\left(x_{n}, f\left(x_{n}\right)\right)$
(1) $\frac{\text { (Replace a general fantom by a pimples faction.) }}{\operatorname{lo}_{0} \text {. }}$

One thing can be viewed from several aspects in many cases.

TABLE 3.2 Newton's Method for $f(x)=2-e^{x}$.

n	x_{n}	$\alpha-x_{n}$	$\log _{10}\left(\alpha-x_{n}\right)$
0	0.000000000000	0.693147180560	-0.1592
1	1.000000000000	0.306852819440	-0.5131
2	0.735758882343	0.042611701783	-1.3705
3	0.694042299919	0.000895119359	-3.0481
4	0.693147581060	0.000000400500	-6.3974
5	0.693147180560	0.000000000000	-13.0961

Two lives aumanay of Newtris method:

- If f, f^{\prime}, and $f^{\prime \prime}$ me all continuous near the wot, and f^{\prime} does wit equal zero at the not. then Newtons onethd will conure whenever che mitral guess is sufficiently close to the soot,
- Morecur, the convergence will be very rapid, with the member of correct digits roughly doubly each iteration.
§3.3 How to ato Newtros Mattowd
Idealy (but not pssible): swael eror $\mid Q$ ankewn $-x_{n} \mid$
S.al: Rewrite $\left|\alpha-x_{n}\right|$ as a compurtaile quantity.
(4) The Mean Value thm LP. (

$$
\Rightarrow f(x)-f\left(x_{n}\right)=f^{\prime}\left(c_{n}\right)\left(\alpha-x_{n}\right), \quad c_{n} \text { is wetween } \alpha+x_{n}
$$

$$
\text { (c) } \alpha-x_{n}: \frac{f(x)-f\left(x_{n}\right)}{f^{\prime}\left(m_{n}\right)}=-\frac{f\left(x_{0}\right)}{f^{\prime}\left(a_{n}\right)}
$$

(II) $\left|\alpha-x_{n}\right|=\left|x_{n}-x_{n-1}\right| c_{n} \rightarrow\left|x_{n}-x_{n-1}\right|$ as $n \rightarrow \infty$ if anarges

Thaefore, a positile stoppong, critarm is

$$
\left[\begin{array}{rl}
\left|x_{n}-x_{n-1}\right| \text { is anale } \\
\text { or } & \left|x_{n}-x_{n-1}\right|
\end{array} \leqslant \varepsilon .\right.
$$

Hemerver, it is pssirike that $\left|x_{n}-x_{n-1}\right|$ is 5 mall ${ }_{0.5}-$ but x_{n} is wot dote t, α !

Ex:

Improverment:

Even you don't know the answer, you may know what the error is (approximately).

Think globally, act locally

Boundary Value Problem (BVP)

§6.10 Boundary Value Problem

Let it fly uss. Pin it down (IVA) (BVP)

$\frac{\text { Problem class (I) }}{\text { Linear } B v p}$	Problem class (I)
Nonlinear $B v P$	
$\begin{cases}-u^{\prime \prime}+p(x) u^{\prime}+q(x) u=f(x) \\ u(0)=g_{0} \\ u(1)=g_{1} \\ 0 \leq x \leq 1\end{cases}$	$\left\{\begin{array}{l}-u^{\prime \prime}=F\left(x, u, u^{\prime}\right) \\ u(0)=g_{0} \\ u(1)=g_{1} \\ 0 \leq x \leq 1\end{array}\right.$

Assumption: all Unique solution exists
(2) The solution is smooth
\$6.10.1 Simple difference mextiods

Taugher's polyminial suggests thant

The BUP

$$
\begin{aligned}
& \rightarrow-u^{\prime \prime}+p(x) u^{\prime}+g(x) u=f(x) \\
& \Rightarrow-\left(1+\frac{1}{2} p(x) k\right) u(x-h)+\left(2+g(x) k^{2}\right) u(x)-\left(1-\frac{1}{2} p(x) h\right) u(x+h) \\
& =h^{2} f(x)+\frac{1}{12} h^{4} u^{(n)}(h a u)+\frac{1}{6} p\left(x h^{k} u^{2}(\xi, x, h) \equiv R(x, h)-0\left(h^{4}\right)\right. \\
& \text { NUK, 2004-06-19 }
\end{aligned}
$$

The afove wiscretyedtom leads to a tridingmal evear Hyotem. eyfined if Eys $(6.94)-(6.96)$

$$
\left[\begin{array}{cccc}
x \times & & \\
x \times x & & \\
x \times x & & \\
& \ddots & \vdots & \\
& & x & x \\
x & & x x
\end{array}\right]\left[\begin{array}{c}
U_{1} \\
U_{2} \\
U_{2} \\
U_{2} \\
\vdots \\
U_{n-1} \\
U_{n}
\end{array}\right]=\left[\begin{array}{c}
x \\
x \\
x \\
\vdots \\
x \\
x
\end{array}\right]
$$

Matlob Exersise: (Vour was ehuid whow genaval pex, goc).)
She the GVP in Example 6.23 by Matilab.
4) User should be able to mpat the grid pont number n.
(2) Comstmat the tridiagmae matsix
(i) solwe the enear syoterm.
(la) Plot the solution curve.

BYE.

$$
\left\{\begin{array} { r l }
{ - u ^ { 4 } } & { = f (x , u , u ^ { \prime \prime }) } \\
{ u (0) } & { = g _ { 0 } } \\
{ u (1) } & { = g _ { 1 } }
\end{array} \quad \left\{\begin{array}{l}
2 n \\
-y^{4}
\end{array}=F\left(x, y, y^{\prime \prime}\right)\right.\right.
$$

The solution of the UP $y(x, p)$ is depend on p. we lupe that

$$
f(p)=y(1, p)-g_{1}=0
$$

That is, we want to find the mart of $f(p)$.
Regular secant method:

$$
P_{k+1}=P_{h}-\left(\frac{P_{k}-P_{2-1}}{f_{1}\left(h_{k}\right)-f_{k}\left(P_{c-1}\right)}\right) f\left(P_{k}\right)
$$

$f_{L}\left(P_{i}\right)$ can be obtained by an $00 z$ IN O soever.

Mat lab :-
solve the problem in Example 6.26, P. 389 ,

$$
\left\{\begin{aligned}
-u^{\prime \prime} & =\left(u^{\prime}\right)^{2} \\
u(0) & =0 \\
u(1) & =1
\end{aligned}\right.
$$

with exact solution $u=\ln [(e-1) x+1]$
Let $\left\{\begin{array}{l}p_{0}=1, \\ p_{L}=0.75\end{array}\right.$

- In the beginning, we use $h=1 / 4$ (carse grid) ts git a better estimation of p.
- then we use a finer grid $h=2 / 128$ to get mure accurate solution to p.

