

But, I guess you want to be the...

IMO Trainning Camp

NUK, 2004_06_19

IMO Trainning Camp

NUK, 2004_06_19

Numerical	Symbolic
Involves numbers directly	Numbers are represented in an equation
3.42-0.79=10.77	(x ² -1)/(x+1)=x-1
3.14159265358979	π
0.250+0.333=0.583	1/4 + 1/3 = 7/12 (= 0.5833)

IMO Trainning Camp

Numerical and Symbolic (cont.)

Symbolic
Computer programs (Maple, Mathematica, Matlab)
Slower / Exact
Highlight the fundamental behavior

Brook Taylor (1685-1731)

Taylor was an ingenious and productive British mathematician.

He attended St. John's College in Cambridge, and shortly after his graduation was elected a Fellow of the Royal Society.

NUK, 2004_06_19

\$ 1.1 Basic tools of calculus 1.1 - []_ Thus I.I (Taylor's Theorem with Remainder) - It represents general functions as polynomials with a known, specified, brundable error. - Polynomials : easy to take derivatives, integrals, ... Let fix & C^{ntl} on [a, b]. Then fix) = Pull + Rulx) $= \sum_{k=0}^{N} \frac{(x-x_0)^k}{[k!]} f^{(k)}(x_0) + \frac{(x-x_0)^{n+1}}{(n+1)!} f^{(n+1)}(x_0), \quad x, x_0$ DIY: For n=3 $\Rightarrow f(x) = ?$ IMO Trainning Camp 31 NUK, 2004_06_19

	2
[DIT: Expand f(x+h) in a taylor series, about the point .	Xo=X.
(p.q) fix th) = ?	
f(t,tn) = f(t,tn)	
IMO Trainning Camp NUK, 2004_06_19	32

Expands at χ_0 . Examples: (ρ_{3}) (1) $e^{\chi} =$	3
(2) STNX =	
() CosX =	
Question: How to evaluate the value of e^{\times} for $x \in [-1, 1]$ we error $\leq [0^{-6}]^{2}$ (Hint: p.3, p.4)	¥h
(Suppoe we can do only t, -, *, /.) Question: What can you say about Fig. 1. (on p.5?	
(Question): How can you improve the accuracy of $\rho_2(x) \approx e^x$ or $x = 1$?	£-
[Matlab] plot Fig. I.I n p. 5.	
IMO Trainning Camp NUK, 2004_06_19	33

$$\begin{aligned} e^{x} &= 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \frac{1}{(n+1)!}x^{n+1}e^{\xi_{n}} \\ &= \sum_{k=0}^{n} \frac{1}{k!}x^{k} + R_{n}(x), \\ \sin x &= x - \frac{1}{3!}x^{3} + \frac{1}{5!}x^{5} + \dots + \frac{(-1)^{n}}{(2n+1)!}x^{2n+1} + \frac{(-1)^{n+1}}{(2n+3)!}x^{2n+3}\cos\xi_{n} \\ &= \sum_{k=0}^{n} \frac{(-1)^{k}}{(2k+1)!}x^{2k+1} + R_{n}(x), \\ \cos x &= 1 - \frac{1}{2!}x^{2} + \frac{1}{4!}x^{4} + \dots + \frac{(-1)^{n}}{(2n)!}x^{2n} + \frac{(-1)^{n+1}}{(2n+2)!}x^{2n+2}\cos\xi_{n} \\ &= \sum_{k=0}^{n} \frac{(-1)^{k}}{(2k)!}x^{2k} + R_{n}(x). \end{aligned}$$

Suppose we want this approximation to be accurate to within 10^{-6} in absolute error i.e., we want $|e^x - p_n(x)| \le 10^{-6}$ for all x in the interval [-1,1]. Note that if we can make $|R_n(x)| \le 10^{-6}$ for all $x \in$ [-1,1], then we will have $|e^{s} - p_{n}(x)| = |R_{n}(x)| \le 10^{-6}$ so that the error in the approximation will be less than 10-6. The best way to proceed is to create a simple upper bound for $|R_n(x)|$, and then use that to determine the number of terms necessary to make this upper bound less than 10-6. Thus we proceed as follows: $|R_s(x)| = \frac{|x^{e+1}e^{c_s}|}{(n+1)!} = \frac{|x|^{n+1}e^{c_s}}{(n+1)!}, \text{ because } e^z > 0 \text{ for all } z$ $\leq \frac{e^{c_i}}{(n+1)!}$, because $|x| \leq 1$ for all $x \in [-1,1]$ $\leq \frac{e}{(n+1)!}$, because $e^{e_x} \leq e$ for all $x \in [-1,1]$. Thus, if we find n such that $\frac{1}{(n+1)!}e \le 10^{-6}$ then we will have $|e^x - p_n(x)| = |R_n(x)| \le \frac{1}{(n+1)!}e \le 10^{-6}$ and we will know that the error is

IMO Trainning Camp

NUK, 2004_06_19

36

§ 2.2 Osfference	e approximations to the deriva	the path
God : to evalute	ficx)	100
Concurrence: f'(x)=	. lim <u>fix+W -AB</u> h+o h	x x+h
	$\approx \frac{f(x+b)-f(x)}{e}$ for small b	
17.33		
對車 Taylor:f(Kth):	$= f(x) + g f'(x) + \frac{y^2}{2} f''(x) + \frac{y^2}{2} f'''(f_x)$	
⇒ f'(x) = ±	$\frac{(x+h)-f(x)}{h} + \frac{1}{2}(hf^{*}(x)) = 0$	-sided differench it
	fixth) - fix + OCh) - First	t order finite differen oximution
IMO Trainning Camp	NUK, 2004_06_19	38

h^{-1}	$D_1(h)$	$E_1(h) = f'(1) - D_1(h)$	$D_2(h)$	$E_2(h)=f'(1)-D_2(h)$
2	3.526814461	-0.8085327148E+00	2.832967758	-0.1146860123E+00
4	3.088244438	-0.3699626923E+00	2.746685505	-0.2840375900E-01
8	2.895481110	-0.1771993637E+00	2.725366592	-0.7084846497E-02
16	2.805027008	-0.8674526215E-01	2.720052719	-0.1770973206E-02
32	2.761199951	-0.4291820526E-01	2.718723297	-0.4415512085E-03
64	2.739639282	-0.2135753632E-01	2.718391418	-0.1096725464E-03
128	2.728942871	-0.1066112518E-01	2.718307495	-0.2574920654E-04

h^{-1}	$D_2(h)$	$E_2(h) = f'(1) - D_2(h)$	$E_2(h/2)/E_2(h)$
2	2.832967758	-0.1146860123E+00	NA
4	2.746685505	-0.2840375900E-01	4.038
8	2.725366592	-0.7084846497E-02	4.009
16	2.720052719	-0.1770973206E-02	4.001
32	2.718723297	-0.4415512085E-03	4.011
64	2.718391418	-0.1096725464E-03	4.026
128	2.718307495	-0.2574920654E-04	4.259
256	2.718292236	-0.1049041748E-04	2.455
512	2.718261719	0.2002716064E-04	-0.524

§ 2.3 Euler's method for initial value problems - Initial value problems for ordinary-differential equations. $\begin{cases} 3'=f(t, y) \\ (g(t_{0}) = y_{0}) \\ - Use the finite difference to approximate y'. \\
\frac{y(t+h)-y(t)}{h} = f(t, y(t)) + \frac{1}{2}hy^{1}(t_{h}) \\
\frac{y(t+h)-y(t)}{h} = f(t, y(t)) + o(h^{2}) \\ - Numerical algorithm: (1) tn = t_{0} + nk (t: grid, h: grid size) \\
(5uler's Method) (2) y_{n+1} = y_{n} + kf(t_{n}, y_{n}) \\
(3) Goto Step (1) \\
MO Training Camp NUK, 2004_06_{19} 48$

2 Example 2.2 (p. 50) $\begin{cases} y' = -y + sint \Rightarrow 5xait soln: y(t) = \frac{3}{2}e^{-t} + \frac{1}{2}(sint - cost) \\ y(c) = 1 \end{cases}$ y (0) = 1 = Euler's steadon: Juli = yn + h (- yn + sinth) - See Fig 2.4 in p.51 DZT - Write a Matlab codes generating similar results m Table 2.5, 2.6 of Fig 2.4. IMO Trainning Camp NUK, 2004_06_19 49

\$ 3.2 Newton's Method	[7
- A classic algorithm for most finding	
- An application of the derivative of a fundam (f')	
- Used by Nectors in 1669 (330 years ago)	
- Even contier by Joseph Raphson, (Year?)	
- Really early by Batylonians. (bear?)	
IMO Trainning Camp NUK, 2004_06_19	52

18 Maon thea I: Geometric - Use the tangent line approximation to the further of at the point (Xn, f(Xn)) () (Replace a general function by a simpler function.) 0.32 5 $\rightarrow \frac{y-f(x_n)}{x-x_n} = f'(x_n)$ (X., four) y= f(Xn) + f'(Xn) (X-Xn) → Root of lo(K) = y=0 Xn > fix= + f(x=x=x=)=0 lo 3 Solve the ximpler further $\Rightarrow \chi = \chi_{n+1} = \chi_n - \frac{f(\chi_n)}{f(\chi_n)}$ IMO Trainning Camp 53 NUK, 2004_06_19

Main idea I	I: Analyfred	
By	. Together's them. (who else?)	
	fix = fixu) + 1x-xu) f (xu) + { (x-xu)	12 f"(g.), ho is bh
	FTX) =0	Given an espress
Þ	$\chi = \chi_m - \frac{f(x_1)}{f'(x_m)} - \frac{1}{2} \left(\chi - \chi_m\right)^2 \frac{f'(x_m)}{f'(x_m)}$	m terms of similar simple plus a remi
3	Newton's Haraton Reminder	generate a numicica
		approximation by dup
	Snupler	the reminder ten
	original	

Example 3.2 (p.º	10) (<u>OZY</u>)	<u> </u> 0
Note: Table 5.2 - Newton's	mphas the number of connect method is not global.	dign'ts is doubly
Bx , (1)		
(1)	L - Govergence	vange?
	NUK, 2004_06_19	00

n	×n	$\alpha - x_n$	$\log_{10}(\alpha - x_n)$
0	0.0000000000000	0.693147180560	-0.1592
1	1.000000000000	0.306852819440	-0.5131
2	0.735758882343	0.042611701783	-1.3705
3	0.694042299919	0.000895119359	-3.0481
4	0.693147581060	0.000000400500	-6.3974
5	0.693147180560	0.000000000000	-13.0961

	(1)
Two loves among of Newton's method:	
. If f, f', and f" are all continuous near the port,	
and f' does not equal zero at the mot.	
then Newton's method will conveye whenever the mitral	
guess is sufficiently close to the root.	
. Morever, the conveyence will be very rapid,	
with the number of correct digits voryhly	
duribly carl otteration.	
0	
IMO Trainning Camp NUK, 2004_06_19	58

\$ 3.3 How to stop Newton's Marthad 112 unknown Idealy (but not possible); 318 cell error 1@- Xn1 Gral: Revorte 100-Xm) as a computable guartity. (I) the Mean Value Thm LP.) of flot) - fikn) = f'(cn) (ok - xn), cn is between at it xn (I) $\alpha - \chi_n = \frac{f(\kappa) - f(\kappa_n)}{f'(\kappa_n)} = -\frac{f(\chi_n)}{f'(\kappa_n)}$ = - f(xm) f(xm) f(xm) f(xm) f(xm) f(xm) rf x- a Nartonia Mothed Xno Xm - frain * lim C= 1 (HW 3.1) = (Xm-xm=1) · Cu f (K-1) (I) |d-Xn| = |Xn-Xn-1 | Cn -> (Xn-Xn-1) as 11+80 if annayes IMO Trainning Camp NUK, 2004_06_19 59

	19
Thursfore, a possible stopping ca	PARA INC.
[1×n-×n-1 10	
or [xu-xu-] 55	
- or c (xu-xun) ± 9	٤
tennen, st no possible sheat 1 but Xn is not close	T (A)
Ex " [xy-e., [=]- (x-) =	moll int small
FILM	2G (a K. K1
Improvement :	
► [fr(u)],+,(xu-)	and a stop Both D and B must small enough.
IMO Trainning Camp NUK, 200	04_06_19 60

§ 6.10 Boundari	y Value Problem	
Let it thy	us. Pin it down	
(IVP)		
Problem class (I)	Problem	class (I)
Lmear BVP		near BVP
	$g(x) u = f(x) \qquad (-u'')$	= F(X, U, U')
, ULO) = go		>) = %
$u(1) = g_1$) = g1
0 5 * 21	U 4	x < 1
Assumption : (1) U	nigne solution exists	

	(2)
the above accordigation leads to a totalizzand l	near system
regioned by Eq. (6.94) - (6.96)	
xxx un-	
Mattab astraise: (Your was should allow gen	eval Par, soc)
She the BUP in Example 6.23 by Matlab.	
(1) User should be able to mpat the good por (2) Constant the tridingmak matrix	st number u
(2) Constant the tridingonal matrix	
(1) Some the linety system.	
(19) Plot the solution curve.	

the accuracy of the method (25 This big Under the same hypotheses are in 7hm 6.D, IC>0, independent of h, Sit. $\max_{1 \leq i \leq n-1} |u_{1}x_{i}| - U_{i}| = Ch^{2}(hu^{(k)} | n - t|) u^{(k)} | n - t|$ Mathah Use your code to reproduce the results m Table 6-14 of Example 6.24 on P.P. 386-387. IMO Trainning Camp 67 NUK, 2004_06_19

sub a dub	u. U. A	(14
\$ 6-10.2 Shroting Main Idea : Channe the ba	undary value problem to mitral	inter orther
Eucos the n Solve the 2 solginit the	nitial derivative. VP. mitial derivative and pole of	
mil the -	Boundary value is participied.	
0		
IMO Trainning Camp	NUK, 2004 06 19	68

$$\frac{(27)}{(100)} = \frac{1}{2} + \frac{1}{2}$$

		122
Matlab .		
	, the problem on Example 6.26, P. 389,	
	$\begin{cases} -u^{(1)} = (u^{(1)})^2 & \text{with exact solution } u^{-1} h [Le] \\ u^{(1)} = 0 & \text{with exact solution } u^{-1} h [Le] \end{cases}$	-1)X+1]
	$\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	
Let	$\int \rho_{0} = 1,$ $\rho_{1} = 0.75$	
	$\int P_{L} = 0.75$	
_ 7. 1	the beginning we use h = 1/4 (warse good)	×
	the start a start a start and start	/~3
git	a better estimation of p.	
- The	we use a first grid la X28 to get mor wate solution to p.	e
. 110	wrate orlution to	
ů		
		27/28
IMO Trainning Camp	NUK, 2004_06_19	70

