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Gradient Descent Algorithms
• Basic idea:

• Consider the following optimization problem:

min
θ∈Rp

l(θ). (1)

Here θ ∈ Rp is a p-dimensional vector.

• Differentiability assumption: If l is twice differentiable on Rp, we may
write l(θ) via Taylor’s expansion around θ′ ∈ Rp as

l(θ) = l(θ′) +∇l(θ′)T (θ − θ′) +O(||θ − θ′||22)

≈ l(θ′) +∇l(θ′)T (θ − θ′) +
1

2c
||θ − θ′||22. (2)

where c > 0 is a constant.

• With (2), we may “approximate” (1) as

min
θ∈Rp

{
l(θ′) +∇l(θ′)T (θ − θ′) +

1

2c
||θ′ − θ||22

}
(3)

Differentiating (3) with respect to θ and equaling the derivative to zero
yields

∇l(θ′)−
θ′ − θ

c
= 0. (4)

Solving (4) yields θ = θ′ − c∇l(θ′).



Gradient Descent Algorithms
• Basic idea (contd):

• Iterative scheme: We can use the iterative scheme

θr+1 = arg min
θ∈Rp

{
l(θr) +∇l(θr)T (θ − θr) +

1

2cr
||θr − θ||22

}
= θr − cr∇l(θr). (5)

to find a solution to the optimization problem (1).

• The iterative scheme (5) is an example of the gradient descent
algorithm.

• Here cr is called the learning rate (or stepsize) at iteration r.

• Stopping criterion: From (5) we know that

||θr+1 − θr||2 = cr||∇l(θr)||2,

which suggests that we may stop the iterative scheme when ||∇l(θr)||2 is
small.

• In practice to stop the algorithm, we use the following stopping criterion:

||∇l(θr)||2 ≤ ε. (6)

where ε is the tolerance for the error. At the rth step, if (6) is satisfied,
we stop the iterative scheme (5).



Gradient Descent Algorithms

• The descent property:

• By letting θ = θr+1, θ′ = θr in (2) we have

l(θr+1) ≈ l(θr)− cr||∇l(θr)||22 +
[cr]2

2c
||∇l(θr)||22

= l(θr)−
(
cr −

[cr]2

2c

)
||∇l(θr)||22.

• From the above result we can see if

cr −
[cr]2

2c
≥ 0, (7)

then we will have

l(θr+1) ≤ l(θr). (8)



Gradient Descent Algorithms

• The descent property (contd):

• That means, the sequence {θr}r generated by the iterative scheme (5)
leads to a decrease in the loss function l.

• The inequality (8) is called the descent property associated with the
sequence {θr}r.

• To make a sequence generated by (5) to satisfy the descent property, we
need to ensure (8) holds.

• Now maximizing (7) yields

cr = c,

which is the optimal choice for the learning rate cr. This ensures that

cr −
[cr]2

2c
=
c

2
≥ 0.

• Important!! In training deep neural network models, it is difficult to know
c priorly.

• Setting learning rate cr relies on “heuristics”, e.g. trial-and-error.



Stochastic Gradient Descent Algorithms

• Problem setting:

• Consider the following optimization problem:

min
θ∈Rp

1

n

n∑
i=1

l(θ; xi), (9)

where θ ∈ Rp is a p-dimensional vector of parameters, and xi is a data
point containing information about the ith observation.

• The problem (9) is a commonly-seen problem format in statistics and
machine learning, e.g. maximum likelihood estimation.

• For practical purposes, we assume the n observations are independently
observed. Further define

h(θ) =
1

n

n∑
i=1

l(θ; xi).



Stochastic Gradient Descent Algorithms

• Problem setting (contd):

• Usually one can see the the objective function in (9) as

h(θ) =
1

n

n∑
i=1

l(θ; xi) = Ex[l(θ; x)], (10)

where Ex is an expectation operator such that
Ex(δ{x=xi}) = P(x = xi) = n−1, where δ{x=xi} = 1 if x = xi, and
δ{x=xi} = 0 otherwise.

• The representation (10) provides us a way to see the deterministic
objective function h(θ) of problem (9) as the expectation of a random
objective function l(θ; x) with P(x = xi) = n−1.



Stochastic Gradient Descent Algorithms

• To find a solution to (9), we consider the following iterative scheme:

θr+1 = θr − crvr, (11)

where vr is a p-dimensional vector.

• When vr = ∇h(θr), the iterative scheme (11) is an example of the gradient
descent algorithm.

• When vr is a random vector such that E[vr] = ∇h(θr), the iterative scheme is
an example of the stochastic gradient descent algorithm (SGD).



Stochastic Gradient Descent Algorithms

• Application:

• In practice, we use the following iterative scheme to compute θr+1: At
the (r + 1)th iteration, choose ir uniformly from {1, 2, · · · , n} and define

vrir = ∇l(θr; xir ).

In this case we have

E[vrir ] = Ex[∇l(θr; xir )] =
1

n

n∑
i=1

∇l(θr; xir ) = ∇h(θr).

• According to theory of stochastic gradient descent algorithms (Chapter 8
of Beck, 2017), if vrir further satisfies some regularity conditions, then we
can use the iterative scheme

θr+1 = θr − cr · vrir

to find a solution to the problem (9).



Stochastic Gradient Descent Algorithms

• Remark 1: In training deep neural network models, we usually sample a batch of
vrir ’s to compute stochastic approximation of ∇h(θr), e.g. with batch size B,

we sample {vir}Bi=1 and then compute

1

B

B∑
i=1

vrir =
1

B

B∑
i=1

∇l(θr; xir )

to approximate ∇h(θr).

• Remark 2: The Stochastic gradient descent algorithm is useful when (a) the
input data are large; and (b) the objective function contains random errors and
the expectation of the objective function exists.



Adaptive Methods

• AdaGrad (Duchi et al., 2011):

• The AdaGrad iterative scheme takes the following form for updating θ:

θr+1 = θr − cr[Hr]−1gr,

where cr is the learning rate, Hr = diag(ur + ε1) with ε ≥ 0 is a scale
matrix, and

ur =

[ r∑
s=1

gs ◦ gs

]1/2

,

and gr is a stochastic approximation to the gradient of the loss function.

• RMSProp (Tieleman and Hinton, 2012):

• The RMSProp iterative scheme takes the following form for updating θ:

θr+1 = θr − cr[Hr]−1gr,

where cr is the learning rate, Hr = diag{(ur + ε1)1/2} with ε ≥ 0, and

ur = γur−1 + (1− γ)gr ◦ gr

with γ ∈ [0, 1].



Adaptive Methods

• Adam (Kingma and Ba, 2015):

• The Adam algorithm extends the ideas of AdaGrad and RMSProp
algorithms by using a smoothed version of the gradient vector.

• The name Adam is inspired from adaptive moment estimation.

• The gradient vector is computed by applying exponential moving
averaging over all gradient vectors at previous iterations.

• The smoothed version of the gradient vector at the rth iteration is defined
by

g̃r = βg̃r−1 + (1− β)gr,

where β ∈ [0, 1].

• In addition, the Adam algorithm scales the gradient vector by introducing
a matrix with diagonal elements [(1− γr)−1ur]1/2 + ε1, where γ ∈ [0, 1],
ε ≥ 0, and vr is adaptively computed in a way such that

ur = γur−1 + (1− γ)gr ◦ gr.



Adaptive Methods

• Comparisons: Wilson et al. (2017) compared three adaptive methods:

AdaGrad, RMSProp and Adam with non-adaptive methods: stochastic gradient

descent algorithm (SGD), the heavy ball method, and Nesterov’s Accelerated

Gradient method. They found:

• Solutions found by adaptive methods were usually generalized worse than
those found by non-adaptive methods.

• Even when the adaptive methods achieved the same training loss or lower
than non-adaptive methods, performances on the test data were still
worse.

• Adaptive methods might have faster initial progress on the training data,
but their performance quickly reached plateau on the test data.

• Though conventional wisdom suggested that the Adam algorithm do not
require tuning, the authors found that tuning the initial learning rate and
decay scheme for the Adam algorithm yields significant improvements
over its default settings in all cases.



Adaptive Methods

• When adaptive methods work?

• According to Wilson et al. (2017), adaptive methods are particularly
popular for training GANs and Q-learning with function approximation.

• These applications stand out because they are not about solving
optimization (minimization) problems.

• The authors guess that the dynamics of adaptive methods may be
accidentally well matched to these non-optimization iterative search
procedures.

• It is also possible that carefully tuned non-adaptive methods may work as
well or better in these applications.



Backpropagation

• The deep neural network model:

• Consider an L-layer neural network:

a[0] = x,

z[l] = θ[l]a[l−1] + b[l] for l = 1, 2, · · · , L,
a[l] = σ[l] ◦ z[l] for l = 1, 2, · · · , L− 1,

ŷ = ŷ(z[L]),

where x is the input (i.e. features), a[l] and θ[l] are the vector of
activation functions σ[l] and the corresponding weight matrix at the lth
layer, z[l] is a function of a[l−1], and ŷ is the predicted value generated by
the neural network for response y.

• We assume a[l] is an ml-dimensional vector, z[l] is an ml-dimensional
vector, and θ[l] and b[l] are ml ×ml−1 matrix and ml-dimensional
vector, respectively. For practical purposes, we assume ŷ is a
p-dimensional vector.



Backpropagation
• The deep neural network model (contd):

• We estimate (θ, b) = {θ[l], b[l]}Ll=1 by

(θ̂, b̂) = arg min
θ,b

Ex,y[f(θ, b; x, y)], (12)

that is, we estimate parameters {θ[l], b[l]}Ll=1 by the minimizing loss
function Ex,y[f(θ, b; x, y)] = h(θ, b).

• Solving (12) is usually done by gradient-based algorithms, e.g. gradient
descent algorithms, stochastic gradient descent algorithms.

• Directly computing (or approximating) the gradient vector of the loss

function h(θ, b) with respect to all parameters {θ[l], b[l]}Ll=1 can be very
complicated.

• A clever technique for computing the gradient vector for solving (12) is
called the forward-backward propagation.

• The forward step is straightforward: At the lth layer, one first computes
z[l] using input a[l−1] and parameters (θ[l], b[l]) and then computes
a[l] = σ[l] ◦ z[l], and then starts at next round computation at the
(l + 1)th layer.

• Remark: One may run the first round forward step by using initial values
randomly generated from some distributions.



Backpropagation

• Backpropagation for gradient computation:

• In summary we have

∇z[l]h = [∇z[l] ŷ][∇ŷh],

∇
θ[l]h = [∇

θ[l]z
[l]][∇z[l]h] = A[l−1]∇z[l]h,

∇b[l]h = [∇b[l]z
[l]][∇z[l]h] = ∇z[l]h,

for l = L, and

∇z[l]h = D[l](θ[l+1])T∇z[l+1]h,

∇
θ[l]h = A[l−1]∇z[l]h,

∇b[l]h = ∇z[l]h,

from l = L− 1 to l = 1.

• Such a numerical procedure is called the backpropagation algorithm,
which is a method for computing the gradient vector of a composite
function such as the loss function h(θ, b) used here.



Backpropagation

• Some remarks on the backpropagation algorithm:

• The backpropagation algorithm is a method that recursively computes
the gradient vector of a composite function based on the idea of the chain
rule.

• It is a popular method in training deep neural network models since they
usually have composite loss functions involving many layers.

• It is a special case of a more general method called the automatic
differentiation or algorithmic differentiation, which is widely used in
state-of-the-art deep learning packages such as TensorFlow or PyTorch.

• Besides the matrix point of view, one way to learn the backpropagation
algorithm is to adopt an approach based on the computational graph.
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Use of Pre-trained Models

• Idea:

• A pre-trained model is a model trained on a dataset different from our
dataset and may be designed for doing a task different from our model’s
task.

• If the dataset for training the pre-trained model is general and large
enough, then the features computed by the pre-trained model may be
more likely to reflect “generic spatial structure” of the visual world
(Section 5.3 of Chollet (2017)).



Use of Pre-trained Models
• Example:

• Consider the following pre-trained model:

PretrainedModel = Ψ̂dc ◦ Ψ̂conv(x). (13)

Here Ψ̂dc and Ψ̂conv are densely connected and convolutional neural
network architectures, respectively. We use “hat” to indicate that the
pre-trained model has been trained on some dataset and the weights
(parameters) have trained values.

• Our model is given as follows:

MyModel = Φdc ◦ Φconv(x). (14)

• By using pre-trained model (13), our new model may look like the
following one:

MyNewModel = Φdc ◦ ẑ

= Φdc ◦ Ψ̂conv(x).

Here ẑ is the features extracted form x using the CNN part of the
pre-trained model.

• The use of pre-trained model is a kind of transfer learning, a learning
approach in that model training relies on using exogenous information
provided by other models.



Use of Pre-trained Models

• Application:

• When Φconv is large, it may be difficult to train (14) if the dataset is
small. In this situation, one can apply a pre-trained model to compute ẑ
to replace Φconv and then only trains Φdc on the small dataset.

• In some cases one will freeze all parameters in Ψ̂conv, i.e. treating ẑ as a
fixed quantity, when training (15). In other cases one may unfreeze top

layers of Ψ̂conv and run a joint training for (15). It is called fine-tuning.

• Caveat:

• If our dataset is very different from the dataset for training the pre-trained
model, we should only apply lower layers of Ψ̂conv to compute ẑ.

• It is because lower layers are responsible for capturing local generic
features (edges, colors, textures and so on) of an image while upper layers
are responsible for capturing abstract concepts of the image.



Label Smoothing
• Assume we have K classes and let y = (y1, y2, · · · , yK) denote the label such

that yk = 1 if the observation belongs to class k.

• Label smoothing (Szegedy et al., 2016) of y, denoted by yLS , is defined as

yLS = (1− α)y +
α

K
(1− y),

where α ∈ [0, 1) is the label smoothing parameters and 1 is a K-dimensional
vector of 1’s.

• For example, K = 3, α = 0.005 and y = (0, 0, 1), then
yLS = (0.0017, 0.0017, 0.995).

• When does label smoothing help? (Müller et al, 2019)

• The authors found that label smoothing can (a) improve generalization
and (b) model calibration;

• But it may hurt knowledge distillation if a teacher network is trained with
label smoothing. A teacher with better accuracy is not necessarily the
one that distills better.

• Explanation: It is because the relative information between logits is
“erased” when the teacher is trained with label smoothing.



Mixup

• Data augmentation is a widely-used approach in machine learning, particularly
when training data involving images.

• Commonly-seen data augmentation techniques include rotation, translation,
cropping, resizing, flipping, and random erasing.

• Mixup (Zhang et al., 2018):

• Motivation: The empirical risk minimization (ERM)-trained neural
networks can memorize all data points in the training sample (i.e. training
error ≈ 0). However, those neural networks may perform significantly
worse on a neighborhood point of that training sample.

• The mixup method is data augmentation technique that encourages the
neural network to behave linearly in-between data points in the training
sample.



Mixup
• Mixup (contd):

• Instead of using available training sample, the method trains models on
virtual (synthetic) data that consist of convex combination of two data
points (y, x) and (y′, x′) randomly selected from the training sample:

x̃ = λx + (1− λ)x′,

ỹ = λy + (1− λ)y′,

where λ is a random variable and following Beta(α, α) with α ∈ [0,∞).

• Here α is a hyperparameter that should be decided by researchers before
model training.

• When models are trained with data (x̃, ỹ), the models are said to be
trained under the vicinal risk minimization (VRM).

• Application to the generative adversarial network: The generative
adversarial network trains a generator G with discriminator D by solving
the following minimax optimization problem:

max
G

min
D

Ex[l(D(x), 1)] + Ez[l(D(G(z)), 0)].

Under the mixup, the input data becomes ỹ = λ · 1 + (1− λ) · 0 = λ and
x̃ = x + (1− λ)G(z). The above minimax problem becomes

max
G

min
D

Ex,z[l(D(x + (1− λ)G(z)), λ)].



Mixup

• Mixup (contd):

• Advantages of mixup: It costs little to generate mixup-type virtual data
(ỹ, x̃).

• When training neural networks with the mixup-type virtual data:

• Performances of ResNet-type neural networks on ImageNet data
classification improve when setting Beta(α, α) with α ∈ [0.1, 0.4].

• When combining mixup with the dropout technique, performances
of neural networks can also improve on the corrupted label problem.

• Performances of neural networks can improve significantly in the
adversarial learning.



Semisupervised GAN

• Semi-supervised learning via generative adversarial networks (Salimans et al.,

2016):

• Assume the classifier model taking a form as

C(x, y;θ) =
exp[yT θ(x)]∑K

k=1 exp[(θ(x))k]
,

where θ(x) is a neural network with K-dimensional output that serves as
a machines for extracting features from x.

• Under supervised learning, we train the neural network θ by solving the
following optimization problem:

θ̂ = arg minEy,x[lC(θ; y, x)],

where lC(θ; y, x) is the loss function corresponding to the learning
problem.



Semisupervised GAN

• Semisupervised learning GAN (contd):

• Consider an observation {x′, ·} when y′ is missing.

• Key idea: Since x′ is also observed from the real world, we can treat the
observation as real in contrast to some fake (artificial) data point
simulated from a generator.

• We build a discriminator to distinguish a real observation from a fake one:

D(x;θ) =

∑K
k=1 exp[(θ(x))k]∑K

k=1 exp[(θ(x))k] + 1
,

• We build a generator to produce fake data point u:

u = G(z;Φ),

where Φ is a neural network model that transforms the vector z to the
fake data point u.



Semisupervised GAN

• Semisupervised learning GAN (contd):

• Φ is learnt by using both real data x′ and fake data u.

• Under the GAN training framework, the real data x′ will be labeled with 1
while the fake data u will be labeled with 0.

• The GAN training problem associated with the discriminator D and
generator G can be formulated as follows:

(θ̂, Φ̂) = arg max
Φ

min
θ

Ex′,z[lD,G(θ,Φ; x′, z)].

• In practice we learn θ and Φ by solving the following estimation problem:

(θ̂, Φ̂) = arg max
Φ

min
θ

{
Ey,x[lC(θ; y, x)] + Ex′,z[lD,G(θ,Φ; x′, z)]

}
,



Batch Normalization

• Batch normalization (Ioffe and Szegedy, 2015):

• The internal covariate shift problem occurs when the distribution of
inputs of the current layer is constantly changing due changes in
parameters of previous layers during the training procedure.

• According to the authors, due to such changes, it is difficult to determine
the learning rate (stepsize) and the initial values, and therefore slows
down the training procedure.

• The authors introduced the batch normalization (BN) layer that carries
out standardization (whitening) on inputs of a layer over each training
mini batch sample using the sample mean and sample variance calculated
with each training mini batch sample.

• As claimed by the authors, it would reduce internal covariate shift as
each of the inputs is standardized.



Batch Normalization

• Key idea:

• Batch normalization aims to stabilize the input distribution by using the
moment matching that forces the current input to have the mean and
variance the same as the previous input.

• Forward propagation:

• The batch normalization carried out standardization by using mini-batch
statistics such as the mini-batch sample mean and variance. With an
n-size mini-batch sample of inputs B = (x1, x2, · · · , xn), compute the
following parameters:

µB =
1

n

n∑
i=1

xi,

σ2
B =

1

n

n∑
i=1

(xi − µB)2,

x̂i = diag[(σ2
B + ε1)−1/2](xi − µB),

yi = γx̂i + β,

where γ and β are scalar-valued learnable parameters.



Batch Normalization

• Backpropagation:

• Now let l be the loss function. The backpropagation corresponding to a
BN layer is given as follows:

∂l

∂γ
=

1

n

n∑
i=1

∂l

∂yi
◦ x̂i,

∂l

∂β
=

1

n

n∑
i=1

∂l

∂yi
,

∂l

∂x̂i
=

∂l

∂yi
· γ,

∂l

∂σ2
B

=
1

n

n∑
i=1

∂l

∂x̂i
◦ (xi − µB) ◦

[(
−1

2

)
(σ2
B + ε1)−3/2

]
,

∂l

∂µB
=

1

n

n∑
i=1

∂l

∂x̂i
◦ [−(σ2

B + ε1)−1/2].



Batch Normalization

• Backpropagation (contd):

• The derivative of the loss function with respect to the input of the ith
batch sample is

∂l

∂xi
=

∂x̂Ti
∂xi

∂l

∂x̂i
+
∂µT
B

∂xi

∂l

∂µB
+
∂(σ2
B)T

∂xi

∂l

∂σ2
B

=
∂l

∂x̂i
◦ [(σ2

B + ε1)−1/2] +
∂l

∂µB
◦
[

2

n
(xi − µB)

]
+

1

n

∂l

∂σ2
B
.

• Prediction: According to the authors, when using a model with BN layers
for prediction, one needs to compute the standardization for new sample.
In this situation, the mean and variance of the BN layer are computed as
follows (using m mini-batch samples):

µB̄ =
1

m

m∑
j=1

µ̂Bj ,

σB̄ =
1

m

m∑
j=1

n

n− 1
σ̂Bj .



Batch Normalization

• Advantages of BN: As claimed by the authors, the BN layer enables us to
adopt a larger learning rate in the training procedure without needing to
consider the gradient exploding problem.

• Remark: The BN layer is scale-invariant, that is BN(ax) = BN(x).

• Some findings:

• Santurkar et al. (2018) pointed out that batch normalization (BN) does
not solve the internal covariate shift (ICS) problem as claimed by its
inventors.

• Instead batch normalization leads to more smoothness of the
optimization landscape, and therefore speeds up the training procedure as
more aggressive learning rates can be used. It eventually leads to better
performance.

• It can be proved that the Lipschitzness of both the loss and its gradients
are improved in the models with the BN layers: The gradients become
more predictive under the models with the BN layers, and larger learning
rates can be used to speed up training.



Batch Normalization

• Question: Is the effectiveness of the BN indeed related to internal covariate

shift?

• Answer: No. The effectiveness of the BN is related to changes of
smoothness of the optimization landscape.

• Question: Is BN stabilization of layer input distributions even effective in

reducing ICS?

• Answer: No. BN may actually lead to increase in ICS.

• The claim that BN layers lead to more smoothness of the optimization
landscape means that the gradients of the loss associated with the BN model is
more “Lipschitz”, i.e. the Lipschitz continuous condition is tighter than those
associated with non-BN models.

• Consequently the l2-norms of the gradients in the models with the BN layers are
more regular than those associated with models without the BN layers. It is due
to reparametrization of the BN layer.



Empirical Comparison

• B. Recht, R. Roelofs, L. Schmidt, V. Shankar (2019). Do ImageNet classifiers

generalize to ImageNet? (https://arxiv.org/abs/1902.10811)

• The authors investigated whether image classification models trained on
CIFAR-10 data or ImageNet data can generalize to newly created data.

• Requirements: The newly created data should follow distributions similar
to CIFAR-10 data or ImageNet data.

https://arxiv.org/abs/1902.10811


Empirical Comparison

• The CIFAR-10 data:

• Published in 2009.

• A subset of Tiny Images, which is a database containing 80 million RGB
color images with 32× 32 pixels.

• Consists of 10 categories: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck.

• Each category has 6000 32× 32 pixel images.

• Both training and test data are class-balanced. The training dataset
contains 50000 images while the test dataset contains 10000 images.



Empirical Comparison

• The ImageNet data:

• Created from a database consisting of 14 million+ images annotated into
∼ 22000 categories.

• The annotation tasks were done via Amazon Mechanical Turk (MTurk)
with 49000 workers from 167 countries.

• The images have no fixed sizes (∼ 500× 400 pixels).

• The ImageNet team has run the yearly ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) from 2010.

• The ILSVRC2012 competition dataset is the benchmark version,
consisting of 1.2 million+ training images, 50000 validation images, and
100000 test images of 1000 categories.



Empirical Comparison

• Creating data similar to the CIFAR-10 data:

• Images were collected from the Tiny Image database.

• The annotation tasks were done by two graduate students.

• The resulting dataset consists of 2000 images (32× 32 pixels).

• Creating data similar to the ImageNet data:

• Images were collected from the Flickr image hosting service.

• The annotation tasks were done by recruiting workers from Amazon
MTurks.

• The resulting dataset consists of 10000 images.



Empirical Comparison

• Models subject for testing with the newly created data:

• 34 models trained on CIFAR-10 data

• 67 models trained on ImageNet data

• Most models were trained by original developers.



Empirical Comparison

• Famous models:

• (AutoAugment; CIFAR-10 only) E. D. Cubuk, B. Zoph, D. Mane, V.
Vasudevan, and Q. V. Le. AutoAugment: Learning augmentation policies
from data. https://arxiv.org/abs/1805.09501, 2018.

• (ResNet) K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for
image recognition. CVPR, 2016.

• (DenseNet) G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.
Densely connected convolutional networks. CVPR, 2017.

• (AlexNet; ImageNet only) A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural networks. NIPS,
2012.

• (PnasNet; ImageNet only) C. Liu, B. Zoph, M. Neumann, J. Shlens, W.
Hua, L.-J. Li, F.-F. Li, A. Yuille, J. Huang, and K. Murphy. Progressive
neural architecture search. ECCV, 2018.

• (VGG) K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. https://arxiv.org/abs/1409.1556,
2014.

• (Inception; ImageNet only) C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens,
and Z. Wojna. Rethinking the Inception architecture for computer vision.
CVPR, 2016.

https://arxiv.org/abs/1805.09501
https://arxiv.org/abs/1409.1556


Empirical Comparison

• Results:

• For VGG and ResNet, CIFAR-10 trained models suffer 8% drop in
accuracy while ImageNet trained models suffer 11% drop in accuracy.

• The accuracy of the best CIFAR-10 model only drops by 3% from 98.4%
to 95.5%.

• In contrast, the accuracy of the best ImageNet model drops by 11% (from
83% to 72%) in top-1 accuracy and a 6% drop (from 96% to 90%) in
top-5 accuracy.

• Models with higher accuracy on the original test data also have higher
accuracy on the newly-created test data, suggesting that robustness
improves as accuracy increases.



Empirical Comparison

Figure: Accuracy for models tested with newly created data (Recht et al.,
2019). Left: Models trained on the CIFAR-10 data; Right: Models
trained on the ImageNet data.



Results

Figure: Accuracy for ImageNet models tested with newly created data
(Recht et al., 2019). Left: Models tested with Threshold0.7 data; Right:
Models tested with TopImage data.
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Performance Measures

• Basic concepts:

• We take binary classification problems as the example, in which cases are
either classified as positive or negative.

TP = number of positive cases who are correctly classified as positive,

TN = number of negative cases who are correctly classified as negative,

FN = number of positive cases who are incorrectly classified as negative,

FP = number of negative cases who are incorrectly classified as positive.

• The above four quantities are summarized in Table 1.

prediction
positive negative

truth positive TP FN
negative FP TN

Table: Confusion matrix.

• Remark: Table 1 is also called the confusion matrix.



Performance Measures

• Taxonomy of performance criteria:

• Below we consider three groups of performance measures.

• These groups are not mutually exclusive, and indeed some of the
performance measures have different names but share exactly the same
mathematical definition.

• TPR, FPR, and FDR (statistics):

• TPR stands for true positive rate, FPR stands for false positive
rate. They are defined as

TPR =
TP

TP + FN
,

FPR =
FP

FP + TN
,

respectively. FDR stands for false discovery rate, which is defined
as

FDR =
FP

TP + FP
.



Performance Measures

• Taxonomy of performance criteria (contd):

• Sensitivity and specificity (medicine; engineering):

• Sensitivity is defined as

Sensitivity =
TP

TP + FN
,

which has exactly the same mathematical definition as TPR.

• Specificity is defined as

Specificity =
TN

FP + TN
,

Remark: We have Specificity = 1− FPR, which is also called true
negative rate or TNR.



Performance Measures

• Taxonomy of performance criteria (contd):

• Recall and precision (machine learning):

• Recall is defined as

Recall =
TP

TP + FN
,

which has exactly the same mathematical definition as TPR.

• Precision is defined as

Precision =
TP

TP + FP
.

Remark: We have Precision = 1− FDR.



Performance Measures

• Below we further introduce commonly-seen criteria for evaluating a model’s
performance in classification.

• Accuracy (ACC):

• It is defined as

ACC =
TP + TN

TP + FN + TN + FP

=
number of correctly classified samples

number of samples
.

The value of ACC is between 0 and 1. The larger the ACC value, the
better the model’s performance.



Performance Measures

• Top-k accuracy (Top-k-ACC):

• In multi-class (K classes) classification, one usually makes class prediction
by first computing predicted probabilities (p̂1, p̂2, · · · , p̂K) and ordering
the probabilities from the largest to the smallest ones to make the final
decision:

P̂ = (p̂[1], p̂[2], · · · , p̂[K]),

For sample i, define

Ĉki = {The indices of the first k elements of P̂i}.

• Top-1 accuracy is defined as

Top-1-ACC =
n∑

i=1

I{ytrue
i ∈ Ĉ1

i }
n

.

• Top-k accuracy is defined as

Top-k-ACC =
n∑

i=1

I{ytrue
i ∈ Ĉki }
n

.



Performance Measures

• F1 score:

• It is defined as

F1 =
2TP

2TP + FP + FN
,

which can be expressed as

F1 =
2Recall · Precision

Recall + Precision
,

i.e. the harmonic mean of Recall and Precision. The value of F1 score is
between 0 and 1. The larger the F1 value, the better the model’s
performance.



Performance Measures

• Area under the ROC curve (AUC):

• ROC stands for receiver operating characteristic.

• An ROC curve is a 2D plot of Sensitivity (y-axis) against 1− Specificity
(x-axis).

• The value of the AUC is between 0 and 1. The larger the AUC value, the
better the model’s performance.

• Matthews correlation coefficient (MCC): It is defined as

MCC =
TP · TN− FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.

The value of MCC is between −1 and 1. The larger the MCC value, the better
the model’s performance (MCC= 1 means perfect classification; MCC= −1
means totally wrong classification.)


