A Quick Summary for Classification

- Random vector (X, Y)
- Bayes classifier: Ŷ = argmax_j π_j(X)
 Target: π_j(X) = P(Y = j|X)
- Model: $\pi_j(X) \cong \pi_j(X; \theta) \rightarrow \text{model distribution } f_{\theta}$
- Data: $\{(X_i, Y_i)\}_{i=1}^n \rightarrow \text{data distribution } \hat{g}$
- Estimating θ via a proper D• $\min_{\theta} D(\hat{g}, f_{\theta}) + \lambda J(\theta) \rightarrow \hat{\theta}$ and $\pi_i(X; \hat{\theta})$

Methods from LR

Robust mislabel logistic regression without modeling mislabel probabilities

Hung Hung

Joint work: Zhi-Yu Jou

Su-Yun Huang

Logistic Regression

- Binary response $Y_0 \leftrightarrow \text{covariate } x$
- Logistic regression
 - Models $P(Y_0 = 1 | x)$ by $\pi(x; \beta) \triangleq \frac{\exp(\beta^T x)}{1 + \exp(\beta^T x)}$
- MLE (or minimum KL-divergence) $\rightarrow \hat{\beta}$ • Classification rule: $\hat{Y}_0 = I(\hat{\beta}^T x > 0)$

Mislabeled Response

- Response Y_0 may not be available
- Mislabeled response $Y = 1 Y_0$

• Mislabel probability: $\eta_j(x) = P(Y \neq j | Y_0 = j; x)$

• Success probability P(Y = 1|x)• $\eta_0(x) \cdot \{1 - \pi(x; \beta)\} + \{1 - \eta_1(x)\} \cdot \pi(x; \beta)$

Fitting (Y, x) with $\pi(x; \beta) \rightarrow$ biased estimate of β

Mislabel Logistic Regression (Copas, 1988)

- Model: $\eta_0(x) = \eta_1(x) = \eta$
- Success probability

•
$$\pi_{\eta}(x;\beta) = \eta \cdot \{1 - \pi(x;\beta)\} + (1 - \eta) \cdot \pi(x;\beta)$$

• Fitting (Y, x) with $\pi_{\eta}(x; \beta)$ • Criterion: $\sum_{i} w_{\eta,i}(\beta) \{Y_i - \pi_{\eta}(x; \beta)\} x_i = 0$ • $w_{\eta,i}(\beta) = \frac{1-2\eta}{\{1-\eta+\eta\exp(-\beta^T x_i)\}\{1-\eta+\eta\exp(\beta^T x_i)\}}$

Mislabel Logistic Regression (Copas, 1988)

- MLE relies on a modeling of $\eta_j(x)$
- Should we need to model $\eta_i(x)$?

Aim: mislabel logistic regression that avoids modeling mislabel probability $\eta_j(x)$ Y

 $\eta_j(x)$

 Y_0

Influence of Mislabeling

• $\eta_0(x) = 0.05$

• $\eta_1(x) = 0.2$

Method: γ -logistic

Rationale of γ -logistic

- MLE \leftrightarrow KL-divergence
 - Sensitive to model mis-specification
- Idea: replace KL-div. with the robust γ -divergence D_{γ}

• Model
$$f_{\theta}$$
 & data g
• $D_{\gamma}(g, f_{\theta}) = \frac{1}{\gamma(1+\gamma)} \left\{ ||g||_{\gamma+1} - \int \left(\frac{f_{\theta}}{||f_{\theta}||_{\gamma+1}} \right)^{\gamma} g \right\}$
• Criterion: $\min_{\theta} D_{\gamma}(g, f_{\theta})$

Robustness of γ -divergence

- Ideal distribution: g = f_θ* for some θ*
 D_ν(g, f_θ) = D_ν(f_{θ*}, f_θ): minimized at θ = θ*
- Contaminated distribution: $g = c \cdot f_{\theta^*} + (1 c) \cdot h$
 - *h*: contamination distribution
 - *c*: contamination proportion

Will $D_{\gamma}(g, f_{\theta})$ be still minimized at $\theta = \theta^*$?

- $D_{\gamma}(cf_{\theta^*} + (1-c)h, f_{\theta}) \propto D_{\gamma}(f_{\theta^*}, f_{\theta})$
 - Not affected by (*c*, *h*)

robustness of γ -divergence (Fujisawa and Eguchi, 2008)

γ -logistic

- Logistic Model: $f(y|x;\beta) = {\pi(x;\beta)}^y \cdot {1 \pi(x;\beta)}^{1-y}$
 - $\pi(x;\beta) = \frac{\exp(\beta^T x)}{1 + \exp(\beta^T x)}$ • $\eta_i(x)$ is left unspecified
- Mislabeled Data: $g(y|x) = c \cdot f(y|x; \beta^*) + (1-c) \cdot h$
 - Target of interest: β^*
 - Arbitrary (*c*, *h*)

• Criterion:
$$\min_{\beta} D_{\gamma}\{g(\cdot | x), f(\cdot | x; \beta)\} \rightarrow \hat{\beta}_{\gamma}$$

Estimating Equation

• $\sum_{i=1}^{n} w_{\gamma,i}(\beta) \{Y_i - \pi(x_i; (\gamma+1)\beta)\} x_i = 0$

• The weight
$$w_{\gamma,i}(\beta) = \left(\frac{\exp\{Y_i(\gamma+1)\beta^T x_i\}}{1+\exp\{(\gamma+1)\beta^T x_i\}}\right)^{\frac{\gamma}{\gamma+1}}$$

- $Y_i = 1$ & small $\beta^T x_i \rightarrow$ small weight
- $Y_i = 0$ & large $\beta^T x_i \rightarrow$ small weight

Asymptotic Normality

- Theorem: $\sqrt{n}(\hat{\beta}_{\gamma} \beta^*) \rightarrow N(0, \Sigma_{\gamma})$
 - $\Sigma_{\gamma} = H_{\gamma}^{-1} \cdot U_{\gamma} \cdot H_{\gamma}^{-1}$
 - $U_{\gamma} = E\left[w_{\gamma,i}^{2}(\beta^{*})\{Y_{i} \pi(x_{i};(\gamma+1)\beta^{*})\}^{2} \cdot x_{i}x_{i}^{T}\right]$
- Empirical estimator $\widehat{\Sigma}_{\gamma}$ for Σ_{γ}
 - Hypothesis testing
 - Confidence interval

Influence Function

- The influence function (IF) of classification accuracy from γ -logistic
- Larger $\gamma \rightarrow$ more resistant to mislabeled data points
- A trade-off between robustness and efficiency

Comparisons

vs. Mislabel logistic regression

γ -logistic vs. Mislabel logistic

- Weight function
 - γ -logistic: $w_{\gamma,i}(\beta) = \left(\frac{\exp\{Y_i(\gamma+1)\beta^T x_i\}}{1+\exp\{(\gamma+1)\beta^T x_i\}}\right)^{\frac{\gamma}{\gamma+1}}$ Miclobel logistic: $w_{\gamma,i}(\beta) = \frac{1-2\eta}{1-2\eta}$

• Mislabel logistic:
$$w_{\eta,i}(\beta) = \frac{1}{\{1-\eta+\eta\exp(-\beta^T x_i)\}\{1-\eta+\eta\exp(\beta^T x_i)\}}$$

- $w_{\gamma,i}(\beta)$ of γ -logistic depends on Y_i
 - Inherently using more correct samples to estimate β
 - No need to model $\eta_i(x) \rightarrow$ more robust

Simulation Studies

Settings

• True response Y_0

• Logistic model:
$$P(Y_0 = 1|x) = \frac{\exp(\beta^T x)}{1 + \exp(\beta^T x)}$$

• Mislabeled response Y

• (S1):
$$\eta_0(x) = 0.05 \& \eta_1(x) = u_1$$

• (S2):
$$\eta_0(x) = \eta_1(x) = 0.05 + (u_1 - 0.05) \cdot \frac{\exp(\beta^T x)}{1 + \exp(\beta^T x)}$$

Depends on Y_0 only

• Large $u_1 \rightarrow$ deviation from mislabel-logistic

Classification Accuracy (CA)

- Logistic has the lowest CA
- Small $u_1 \leq 0.2$
 - Modeling η_i is NOT critical
 - Robust methods perform well
- Large $u_1 > 0.2$
 - Modeling η_i is critical
 - γ -logistic \gg mislabel logistic

The Pima Data

Pima Data

- *Y*: diabetes status
- X: 8 covariates
 - the pregnant times, glucose concentration, blood pressure, triceps skin fold thickness, serum insulin, BMI, diabetes pedigree function, age
- Aim: effects of covariates on the diabetes status

Estimates of eta

- CI: γ -logistic > logistic
 - Efficiency vs. bias
- Declared significant by γ -logistic

There exist some

influential observations

- X₃: blood pressure
- X₅: serum insulin

Pima Data

- Estimated success probability: $\pi(x_i; \hat{\beta}_{\gamma})$
 - Red: *Y* = 1
 - Blue: Y = 0
- Smaller $w_{\gamma,i}(\beta) \rightarrow$ mislabeled • p-values by parametric bootstrap
- Subjects being identified as outlier are marked with "+"
 - Contribute less to $\hat{\beta}_{\gamma}$

Conclusions

- γ -logistic: a robust mislabel logistic regression
 - The robustness of γ -divergence
- Comparing with mislabel logistic...
 - γ -logistic leaves the mislabel probability $\eta_i(x)$ unspecified

References

- Hung, H., Jou, Z. Y., and Huang, S. Y. (2017). Robust mislabel logistic regression without modeling mislabel probabilities. *Biometrics*, 74, 145-154. → γ-logistic
- Fujisawa, H. and Eguchi, S. (2008). Robust parameter estimation with a small bias against heavy contamination. *Journal of Multivariate Analysis*, 99, 2053-2081. → robustness of γ-divergence
- Copas, J. B. (1988). Binary regression models for contaminated data. Journal of the Royal Statistical Society, Series B, 50, 225-265. → mislabel logistic

Methods from LR

