Generalized t-statistic and AUC for binary classification

Osamu Komori
University of Fukui
Shinto Eguchi
The Institute of Statistical Mathematics

Humanities and Social Sciences Center, Academia Sinica, Taiwan
December 11, 2015
 - t-statistics based on a generator function U
 - Optimal-U in terms of prediction and classification accuracy

2. Generalized AUC (Komori, O., Hung, H., Chen, P. Huang, S. and Eguchi, S.)

3. Discussion
How to deal with the heterogeneity of sample of disease group?

$y = 0$ (control); $y = 1$ (diabetes)

$x = (\text{glucose level, BMI, diabetes measure})$

Distribution of the LDF: controls ($y=0, n=500$), cases ($y=1, n=268$)

$\beta^T x$
Gene expression data of asthmatic markers (Dottorini et al., 2011)

...
Problem setting

- We focus on a linear discriminant function: \(F(x) = \beta^T x, \)
 where \(x \in \mathbb{R}^p \)

- We assume that the sample of controls \((y = 0)\) are normally distributed:
 \[
 x_0 \sim N(\mu_0, \Sigma_0),
 \]
 where we apply log transformation if necessary.
 - We summarize the information of the sample into the sample mean \(\bar{x}_0 \), and sample variance \(S_0 \).

- However, we recognize the distribution of the cases sample \((y = 1)\) is far from normality.
 - We take it into consideration more flexibly.

- We propose the generalized t statistic based on \(U \) function.
 - t-statistics based on a generator function U
 - Optimal-U in terms of prediction and classification accuracy

2. Generalized AUC (Komori, O., Hung, H., Chen, P. Huang, S. and Eguchi, S.)

3. Discussion
Generalization of t-statistic

For two samples \(\{x_{0i} : i = 1, \ldots, n_0\} \) and \(\{x_{1j} : j = 1, \ldots, n_1\} \), we consider the following statistic based on \(F(x) = \beta^T x \).

Generalized t-statistic (Komori et al., 2015)

\[
L_U(\beta) = \frac{1}{n_1} \sum_{j=1}^{n_1} U\left\{ \frac{\beta^T(x_{1j} - \bar{x}_0)}{(\beta^T S_0 \beta)^{1/2}} \right\},
\]

where \(U \) is an arbitrary function: \(\mathbb{R} \to \mathbb{R} \); \(\bar{x}_y, S_y \) are conditional sample mean and sample variance given \(y \).

\[
L_U(\beta) = E_1\left[U\left\{ \frac{\beta^T(x - \mu_0)}{\beta^T \Sigma_0 \beta} \right\} \right],
\]

where \(E_y, \mu_y, \Sigma_y \) are conditional mean and variance given \(y \).
t-statistic, AUC, Fisher, K-L divergence

1. t statistic: if $U(w) = w$, then
 \[
 L_1(\beta) = \frac{\beta^T(\bar{x}_1 - \bar{x}_0)}{(\beta^T S_0 \beta)^{1/2}}.
 \]

2. AUC: If $U(w) = \Phi(w)$ (Su and Liu, 1993), then
 \[
 L_\Phi(\beta) = \frac{1}{n_1} \sum_{j=1}^{n_1} \Phi \left\{ \frac{\beta^T(x_{1j} - \bar{x}_0)}{(\beta^T S_0 \beta)^{1/2}} \right\} \rightarrow \text{AUC}(\beta),
 \]

3. Fisher: If $\hat{U}(w) = -(w - \hat{c}_0)^2$, then
 \[
 \arg\max_{\beta \in \mathbb{R}^p} L_{\hat{U}}(\beta) \propto (\hat{\pi}_0 S_0 + \hat{\pi}_1 S_1)^{-1}(\bar{x}_1 - \bar{x}_0).
 \]

4. K-L divergence: If $U(w) = U_{\text{opt}}(w)$, then
 \[
 \mathbb{L}_{U_{\text{opt}}}(\beta) = \int f_1(w) \log \frac{f_1(w)}{\phi(w, \mu_w, \sigma_w^2)} \, dw.
 \]
Three assumptions

- normality assumption of data for $y = 0$: $x_0 \sim N(\mu_0, \Sigma_0)$.

- consistency

 (A) $E_1(g \mid w = a) = 0$ for all $a \in \mathbb{R}$,

- asymptotic variance

 (B) $\text{var}_1(g \mid w = a) = Q_0$ for all $a \in \mathbb{R}$,

where $w = \beta_0^T(x - \mu_0)$, $g = Q_0(x - \mu_0)$, $Q_0 = I_p - \beta_0\beta_0^T$. The target parameter is defined as.

$$
\beta_0 = \frac{\Sigma_0^{-1}(\mu_1 - \mu_0)}{\{(\mu_1 - \mu_0)^T\Sigma_0^{-1}(\mu_1 - \mu_0)\}^{1/2}} \approx \beta_F,
$$

where $\beta_F = (\Sigma_0 + \Sigma_1)^{-1}(\mu_1 - \mu_0)/\{(\mu_1 - \mu_0)^T(\Sigma_0 + \Sigma_1)^{-1}(\mu_1 - \mu_0)\}^{1/2}$ and we can assume $\Sigma_0 = I_p$ and $\mu_0 = 0$ in general.
Consistency

We consider the estimator that maximizes the generalized t-statistic:

$$\hat{\beta}_U = \arg\max_{\beta \in \mathbb{R}^p} L_U(\beta).$$

Theorem 1

Under Assumption (A) $\hat{\beta}_U$ *is consistent to β_0 for any U.*

Proof.

Using $w = \beta_0^T (x - \mu_0)$ and $g = Q_0(x - \mu_0)$, we have

$$\frac{\partial}{\partial \beta} \mathbb{L}(\beta) = E_{U} [U'(w)g],$$

which is 0 if $\beta = \beta_0$ on account of the assumption (A). Hence from the strong law of large numbers, $\hat{\beta}_U$ is asymptotically consistent with β_0.
What is assumption (A)?

Proposition 1

If it holds that

\[p_1(x) = p_1((I - Q_0)(x - \mu_0) + \mu_0), \]

then (A) is satisfied where \(p_1(x) \) is the probability density function of \(x \) given \(y = 1 \).

This means that \(p_1(x) \) is symmetrical with respect to \(\mu_0 + a\beta_0 \ (a \in \mathbb{R}) \). That is, it covers a wide range of distributions such as the elliptical distributions including the multivariate t-distribution with mean \(\mu_1 \) and the precision matrix \(I_p \).
Gaussian mixture model

\[p_1(x) = \sum_{k=1}^{\infty} \epsilon_k \phi(x, \nu_k, V_k). \]

Proposition 2

Assumptions (A) and (B) under the infinite mixture model are rewritten as

(A’) \[\sum_{k \in K_\ell} \epsilon_k (Q_0 - Q_k) = 0, \quad \sum_{k \in K_\ell} \epsilon_k Q_k (\nu_k - \mu_0) = 0 \quad \text{for any } \ell \in \mathbb{N} \]

(B’) \[\sum_{k \in K_\ell} \epsilon_k \left\{ Q_k V_k Q_0 - Q_0 \right\} = 0 \quad \text{for any } \ell \in \mathbb{N} \]

where \(Q_k = I_p - V_k \beta_0 \beta_0^T / (\beta_0^T V_k \beta_0 \) and \(K_\ell = \{ k \mid \beta_0^T \nu_k = \beta_0^T \nu_\ell, \beta_0^T V_k \beta_0 = \beta_0^T V_\ell \beta_0 \}. \)
Illustration of typical examples

Figure 1: Contour plots of probability densities of $y = 0$ in gray and $y = 1$ in black, which satisfy Assumptions (A) and (B). For all three panels, $\mu_0 = (0, 0)^T$, $\Sigma_k = \Sigma_0 = \text{diag}(1, 1)$ for all k. $v_1 = (0, 0)^T$, $v_2 = (2, 2)^T$, $\epsilon_1 = 0 \cdot 2$ and $\epsilon_2 = 0 \cdot 8$ in the left panel; $v_1 = (-1, -1)^T$, $v_2 = (2, 2)^T$, $\epsilon_1 = 0 \cdot 2$ and $\epsilon_2 = 0 \cdot 8$ in the middle panel; $v_1 = (1, 1)^T$, $v_2 = (1 \cdot 5, 0 \cdot 5)^T$, $v_3 = (0 \cdot 5, 1 \cdot 5)^T$, $v_4 = (-0 \cdot 5, 2 \cdot 5)$, $v_5 = (2, 2)^T$, $\epsilon_1 = \epsilon_3 = \epsilon_4 = 0 \cdot 1$, $\epsilon_2 = 0 \cdot 4$ and $\epsilon_5 = 0 \cdot 3$ in the right panel.
Semiparametric model

Theorem 2

Under the assumption \(x_0 \sim N(\mu_0, \Sigma_0) \), *if it holds that*

\[
p_1(x) = \psi(c + \beta^T x)p_0(x),
\]

then

1. \(\beta \) is proportional to the target parameter \(\beta_0 \)
2. assumptions (A) and (B) hold.

If we consider \(\psi(z) = \exp(z) \), it corresponds to logistic linear model. \(\psi \) is an arbitrary non-parametric function.
1 Generalized t-statistic (Komori, O., Eguchi, S. and Copas, J., 2015)
 - t-statistics based on a generator function U
 - Optimal-U in terms of prediction and classification accuracy

2 Generalized AUC (Komori, O., Hung, H., Chen, P. Huang, S. and Eguchi, S.)

3 Discussion
Asymptotic variance

Let $f_1(w)$ be a probability density function of $w = \beta_0^T(x - \mu_0)$ given $y = 1$.

Theorem 3

Under assumptions (A) and (B), $n_1^{1/2}(\widehat{\beta}_U - \beta_0)$ is asymptotically distributed as $N(0, \Sigma_U)$, where

\[
\Sigma_U = c_U Q_0^-,
\]

\[
c_U = \frac{E_1\{U'(w)^2\} + \pi_1/\pi_0[E_1\{U'(w)w\}]^2 + \pi_1/\pi_0[E_1\{U'(w)\}]^2}{\left[E_1\{U'(w)S(w)\} + E_1\{U'(w)w\}\right]^2},
\]

where Q_0^- is the generalized inverse of Q_0, $S(w) = \partial \log f_1(w)/\partial w$ and U' is the first derivative of U.
Theorem 4

The optimal U that minimizes the asymptotic variance of $\widehat{\beta}_U$ is given as

$$U_{\text{opt}}(w) = \log \frac{f_1(w)}{\phi(w, \mu_w, \sigma^2_w)},$$

where $\mu_w = E(w), \sigma^2_w = \text{var}(w)$. Moreover, we have

$$\min_U c_U = \frac{\sigma^2_w}{\mu_{1,S^2} - 1 + (\pi_0 \mu^2_{1,w} + \sigma^2_{1,w} - 1)(\pi_0 + \pi_1 \mu_{1,S^2})},$$

where $\mu_{1,w} = E_1(w), \sigma^2_{1,w} = E_1\{(w - \mu_{1,w})^2\}, \mu_{1,S^2} = E_1\{S(w)^2\}$.

Optimal U function
Optimality in terms of AUC

The expected generalized t-statistic asymptotically satisfies

$$E\{\mathbb{L}_U(\hat{\beta}_1)\} - E\{\mathbb{L}_U(\hat{\beta}_2)\} = \frac{1}{2n_1} \text{tr}[H_U(\beta_0)\{\text{var}_A(\hat{\beta}_1) - \text{var}_A(\hat{\beta}_2)\}] \geq 0$$

optimaly of $\hat{\beta}_{U_{opt}}$

$$E\{\mathbb{L}_U(\hat{\beta}_{U_{opt}})\} \geq E\{\mathbb{L}_U(\hat{\beta})\}.$$

For example, if we take $\Phi(w)$ as $U(w)$, then we have

$$H_\Phi(\beta_0) = -2 \int \phi(w)wf_1(w)dw Q_0.$$

Here we have $\int wf_1(w)dw = E_1(w) = (\mu_1^T \mu_1)^{1/2} > 0$. This implies that $\int \phi(w)wf_1(w)dw > 0$ because of the symmetry of $\phi(w)$ with respect to the original point. Hence, the estimator $\hat{\beta}_{U_{opt}}$ asymptotically has a maximum value of AUC.
Algorithm for estimation of β_0

1. Initialize as $\beta^{(1)} = S_0^{-1}(\bar{x}_1 - \bar{x}_0)$.

2. For $t = 2, \cdots, T$,
 - Estimate $f_1(w)$ based on kernel method to produce $\hat{U}_{opt}(w)$.
 - Update $\beta^{(t-1)}$ to $\beta^{(t)}$ as
 \[
 \beta^{(t)} = \arg\max_{\beta \in \mathbb{R}^p} \frac{1}{n_1} \sum_{j=1}^{n_1} \hat{U}_{opt}\left\{ \frac{\beta^T(x_{1j} - \bar{x}_0)}{(\beta^TS_0\beta)^{1/2}} \right\}
 \]

3. Output $\hat{\beta}_U = \beta^{(T)}$.

Note that the initial value $\beta^{(1)}$ in step 1 above could be replaced by any other value, so avoiding the need to calculate the inverse of S_0.
Simulation

Setting

\[x_0 \sim N(0, I_p), \ x_1 \sim (1 - \epsilon_1 - \epsilon_2)N(\nu_0, V_0) + \epsilon_1 N(\nu_1, V_1) + \epsilon_2 N(\nu_2, V_2), \]

where \(\epsilon_1 = \epsilon_2 = 0.1, \ \nu_0 = (-1, -0.1, \ldots, -0.1)^\top \in \mathbb{R}^p, \ \nu_1 = (1, 0.1 \ldots, 0.1)^\top \nu_2 = (3, 0.3 \ldots, 0.3)^\top \in \mathbb{R}^p, \ V_0 = V_1 = V_2 = I_p \) and \(\pi_0 = \pi_1, \ p = 10 \) and \(n = 200 \).
Solution paths by U_{opt}-lasso for variables in X group

$$L_{U}^{\lambda}(\beta) = L_{U}(\beta) - \lambda \sum_{k=1}^{p} |\beta_k|,$$
R package of U-lasso

ULasso-package (ULasso)

Lasso for the generalized t-statistic

Description

Maximization of the generalized t-statistic with L1 penalty based on a generator function U

Usage

ulasso(x, y, step=50, max.iter=50, type="opt", is.plot=TRUE, anchor=NULL)

Arguments

x matrix of predictors
y binary response (TRUE or FALSE) to be predicted
step number of multiplicative grids for the range of values of L1 penalty
max.iter maximum iteration number T for the update of the coefficient beta
type type of U function used in the algorithm: “opt” for the optimal-U function, “quad” for the quadratic-U function, “auc” for auc-U function and “linear” for linear-U function.
is.plot If TRUE, the resultant path solution is drawn.
anchor name of anchor variable fixed in the algorithm. If NULL the variable with the highest value of AUC is selected.
 - t-statistics based on a generator function U
 - Optimal-U in terms of prediction and classification accuracy

2. Generalized AUC (Komori, O., Hung, H., Chen, P. Huang, S. and Eguchi, S.)

3. Discussion
Generalization of Area under the ROC curve (AUC)

For two samples \(\{x_{0i} : i = 1, \ldots, n_0\}\) and \(\{x_{1j} : j = 1, \ldots, n_1\}\), we consider a linear predictor \(F(x) = \beta^T x\) and propose

Generalized AUC

\[
L_U(\beta) = \frac{1}{n_0 n_1} \sum_{i=1}^{n_0} \sum_{j=1}^{n_1} U\left\{ \frac{\beta^T (x_{1j} - x_{0i})}{(\beta^T S \beta)^{1/2}} \right\},
\]

where \(U\) is a generator function: \(\mathbb{R} \rightarrow \mathbb{R}\); \(\bar{x}_y\) is a conditional sample mean of \(x\) given \(y\); \(S = S_0 + S_1\).

\[
\widehat{\beta}_U = \arg\max_{\beta \in \mathbb{R}^p} L_U(\beta)
\]
Two assumptions

- **consistency**
 \[E_y(g_y | w_y = a) = 0 \quad \text{for all } a \in \mathbb{R}, \text{ for } y = 0, 1 \]

- **asymptotic variance**
 \[\text{var}_y(g_y | w_y = a) = \Sigma_y^* \quad \text{for all } a \in \mathbb{R}, \text{ for } y = 0, 1 \]

where \(w_y = \beta^T_F x_y, g_y = Q x_y, Q = I - \beta_F \beta_F^T, \Sigma_y^* = Q \Sigma_y Q^T. \) And we define a target parameter of \(\beta \) as

\[
\beta_F = \frac{\Sigma^{-1}(\mu_1 - \mu_0)}{\{(\mu_1 - \mu_0)^T \Sigma^{-1}(\mu_1 - \mu_0)\}^{1/2}},
\]

where we assume \(\Sigma = \Sigma_0 + \Sigma_1 = I_p \) and \(\mu_0 + \mu_1 = 0 \) without loss of generality

The target parameter is the coefficient of Fisher linear predictor. No normality assumption of \(x_0 \).
Gaussian mixture

We consider Gaussian mixture such that

\[p_y(x) = \sum_{k=1}^{\infty} \epsilon_{yk} \phi(x, \nu_{yk}, V_{yk}) \text{ for } y = 0, 1. \]

Proposition 3

Then assumption (A) and (B) are rewritten

(A') \[\sum_{k \in K_{y\ell}} \epsilon_k (Q - Q_{yk}) = 0, \quad \sum_{k \in K_{y\ell}} \epsilon_{yk} Q_{yk} \nu_{yk} = 0, \text{ for } \forall \ell \in \mathbb{N}, \ y = 0, 1 \]

(B') \[\sum_{k \in K_{y\ell}} \epsilon_{yk} \{ Q_{yk} V_{yk} Q - Q \Sigma_y Q \} = 0, \text{ for } \forall \ell \in \mathbb{N}, y = 0, 1 \]

where \(Q_{yk} = I_p - V_{yk} \beta_F \beta_F^T / (\beta_F^T V_{yk} \beta_F), \) \(K_{y\ell} = \{ k \mid \beta_F^T \nu_{yk} = \beta_F^T \nu_{y\ell}, \beta_F^T V_{yk} \beta_F = \beta_F^T V_{y\ell} \beta_F \} \).
Semiparametric model

Theorem 5

Let \(\psi_y \) be a function: \(\mathbb{R} \rightarrow \mathbb{R}_+ \) such that

\[
p_y(x) = \psi_y(c + \beta^\top x)\phi(x, 0, \Sigma_y), \quad \text{for } y = 0, 1,
\]

and

\[
\Sigma_y \beta = \lambda_y \beta, \quad \text{for } y = 0, 1.
\]

where \(\lambda_y(\neq 0) \). Then

1. \(\beta \) is proportional to \(\beta_F \)
2. assumption (A) and (B) are satisfied,

where \(\phi(x, \mu, \Sigma) \) is a normal distribution of mean \(\mu \) and variance \(\Sigma \). \(\psi_y \) is an arbitrary non-parametric function.
Asymptotic variance

Let \(f(w) \) be a density function of \(w = w_1 - w_0 = \beta_F^T(x_1 - x_0) \).

Theorem 6

Under assumptions (A) and (B) with \(\Sigma_0^*/\pi_0 = \Sigma_1^*/\pi_1 \), \(n^{1/2}(\hat{\beta}_U - \beta_F) \) is asymptotically distributed as \(N(0, \Sigma_U) \)

\[
\Sigma_U = c_U Q^{-1},
\]

\[
c_U = \frac{E_0 \left[E_1 \{ U'(w) \} \right]^2 + E_1 \left[E_0 \{ U'(w) \} \right]^2 + 2\rho E\{ U'(w) \} E\{ U'(w)w \} - \left[E\{ U'(w)w \} \right]^2}{\left[E\{ U'(w)S(w) + U'(w)w \} \right]^2}.
\]

where \(Q^{-1} \) is the generalized inverse of \(Q \); \(\Sigma_y^* = Q \Sigma_y Q^T \); \(S(w) = \partial \log f(w) / \partial w \); \(U' \) is the first derivative of \(U \) and \(\rho = E(w) \).
Optimal U function

By variational method, the optimal-U minimizing the asymptotic variance should satisfy

\[E_0[U'(w)] + E_1[U'(w)] = \lambda S(w) + aw + b, \]

where $w = w_1 - w_0$; $S(w) = \partial \log f_1(w)/\partial w$; \(\lambda, a, b\) are some constants.

Remark 1

Note that there does not exist $U(w)$ if $S(w)$ is a non-linear function.

⇒ 「No optimal-U for generalized AUC in general」

- β_0 is easy to estimate efficiently (generalized t-statistic)
- β_F is difficult to estimate efficiently (generalized AUC)
The scalar term c_U in asymptotic variance is upper-bounded by

$$c_U \leq \frac{2E\{U'(w)^2\} + 2\rho E\{U'(w)\}E\{U'(w)w\} - \left[E\{U'(w)w\} \right]^2}{\left[E\{U'(w)S(w) + U'(w)w\} \right]^2},$$

where the equality holds when $U(w) = aw + b$.

Proposition 4

The upper-bound is minimized by

$$U_{\text{upper}}(w) = \log f(w) + \frac{1}{2}w^2 - \frac{\rho^3}{2 + \rho^2}w.$$

Based on $U_{\text{upper}}(w)$ we construct optimal-U by polynomial approximation

$$U_{\text{opt}}(w) = U_{\text{upper}}(w) + a_1w + a_2w^2 + \cdots + a_mw^m,$$
Optimal order of polynomial approximation

\[c_{U_m^{(k)}} = \frac{\overline{E}_0^{(k)} \left[\overline{E}_1^{(k)} U_m^{(k)'}(w) \right]^2 + \overline{E}_1^{(k)} \left[\overline{E}_0^{(k)} U_m^{(k)'}(w) \right]^2 + 2\hat{\rho} \overline{E}_1^{(k)} \{ U_m^{(k)'}(w) \} \overline{E}_1^{(k)} \{ U_m^{(k)'}(w) w \} - [\overline{E} \{ U_m^{(k)'}(w) w \}]^2}{[\overline{E}_1^{(k)} \{ U_m^{(k)'}(w) S(w) + U_m^{(k)'}(w)(w) \}]^2} \]

where \(\overline{E}_1^{(k)} U'(w) = 1/(n_0^{(k)} n_1^{(k)}) \sum_{i \in I_k} \sum_{j \in J_k} U'(w_{1j} - w_{0i}) \),
\(\overline{E}_0^{(k)} U'(w) = 1/n_0^{(k)} \sum_{i \in I_k} U'(w_{1j} - w_{0i}) \), \(\overline{E}_1^{(k)} U'(w) = 1/n_1^{(k)} \sum_{j \in J_k} U'(w_{1j} - w_{0i}) \). And \(n_0^{(k)} \) and \(n_1^{(k)} \) are numbers of elements of \(I_k \) and \(J_k \), respectively, where

\[I_k \cap I_{k'} = \emptyset \quad (k \neq k'), \quad \bigcup_{k=1}^K I_k = \{1, \ldots, n_0\} \]

\[J_k \cap J_{k'} = \emptyset \quad (k \neq k'), \quad \bigcup_{k=1}^K J_k = \{1, \ldots, n_1\}. \]
Cross validation

Plot of $c_{U_m}^{(k)}$ against m
1. We propose generalized t-statistic and derive an optimal-U minimizing asymptotic variance. The lasso-type method is also considered to allow for high dimensional data analysis.

2. In order to allow for heterogeneity for both populations, we consider generalized AUC and its approximated optimal U.

3. We have confirmed that our proposed methods work well in simulation studies as well as real data analysis (not shown in details).
Contents

 - t-statistics based on a generator function U
 - Optimal-U in terms of prediction and classification accuracy

2. Generalized AUC (Komori, O., Hung, H., Chen, P. Huang, S. and Eguchi, S.)

3. Discussion
Fisher linear discriminant analysis

\[F(x) = \beta_F^T x + c, \]

where \(\beta_F = (S_0 + S_1)^{-1}(\bar{x}_1 - \bar{x}_0) \) and \(c \) is a constant.

1. It is proposed by Ronald A. Fisher (Fisher, 1936).
2. It is derived by maximizing the ratio of the variance between the two classes to the variance within the classes.
3. It is still valid and useful in real data analysis (Dudoit et al., 2002; Hess et al., 2006)
4. Regularized LDA (Guo et al., 2007; Witten and Tibshirani, 2011), LDA in the reproducing kernel Hilbert space (Mika et al., 1999) and LDA with Lasso (Trendafilov and Jolliffe, 2007)
Discussion 2: Breast cancer data analysis

Figure 2: Mean area above the ROC curves plotted against the number of top genes included in the classifiers (Hess et al., 2006)
Discussion 3: Consistency of $\hat{\beta}_U$ to β_F

The important assumption is the one about consistency

(A) \[E_y(g_y \mid w_y = a) = 0 \quad \text{for all } a \in \mathbb{R}, \text{ for } y = 0, 1 \]

For practical purpose, we can omit assumption (B)

(B) \[\text{var}_y(g_y \mid w_y = a) = \Sigma_y^* \quad \text{for all } a \in \mathbb{R}, \text{ for } y = 0, 1 \]

In that case we need the optimization regarding the asymptotic variance (matrix)

\[U_{\text{opt}} = \arg\min_U |\Sigma_U|, \]

where U can be modeled using natural cubic spline or sigmoid function with some scale parameter.
Discussion 4: open problems

1. How far can Fisher linear discriminant analysis be extended by \(F(x) = \hat{\beta}^T_U x \)? Especially in high dimensional data analysis?

2. What are conditions of probability density function \(p_0(x) \) and \(p_1(x) \) such that \(\hat{\beta}_U \) has consistency to \(\beta_F \)?

3. How do we derive the optimal \(-U\) to estimate \(\beta_F \)?
Bibliography I

