Statistical Meta-Modeling for Complex System Simulations: Kriging, Alternatives and Design

C. F. Jeff Wu
School of Industrial and Systems Engineering
Georgia Institute of Technology

- Statistical meta modeling of computer experiments
- Kriging as the main tool: two examples of computer experiments
 - two levels of accuracy
 - with qualitative/quantitative factors
- Alternatives to kriging (to avoid numerical instability)
- Some novel design issues
Why computer experiments?

✓ No need for expensive lab equipments and materials, less costly than physical experiments.

✓ Not affected by human and environmental factors.

✓ Study dangerous or infeasible physical experiments, such as ammunition detonation.
Some examples

Computer Experiments/Simulations

Chemical & Biology: nanoparticle and polymer synthesis…

Mechanical: machining, assembling…

Aerospace: aircraft design, dynamics…
Statistical Meta-Modeling of Computer Experiments

Robustness, optimization

Surrogate model (Kriging)

Noise simulations, error propagation

More FEA runs

Computer modeling (finite-element simulation)

Physical experiment or observations
Kriging as an interpolator

• Kriging is an interpolation method: \(\hat{y}(x_i) = y_i, x \in \mathbb{R}^p. \)
• Originated in geostatistics; proposed for computer experiments by Sacks, Welch et al.
Kriging Modeling

- Model assumption: Gaussian process.

\[y(x) \sim GP(\mu(x), \sigma^2 \phi(\cdot)). \]

- \(\mu(x) \) — mean, linear model \(\mu(x) = f(x)' \beta \), where
 \[f(x) = (f_1(x), \ldots, f_k(x))'. \]

- \(\phi(\cdot) \) — correlation function, \(\phi(x_1 - x_2, \theta) \), e.g., Gaussian Correlation Function,
 \[\phi(x_1 - x_2, \theta) = \exp\left(-\sum_{i=1}^{p} \theta_i (x_{1,i} - x_{2,i})^2\right), \quad \theta \in \mathbb{R}_+^p \]

- \(\sigma^2 \) — variance.
Best Linear Unbiased Predictor

- Best Linear Unbiased Predictor (BLUP):

\[\hat{y}(x) = f(x)\hat{\beta} + r(x)'R^{-1}(y - F\hat{\beta}), \]

- \(\hat{\beta} = (F' R^{-1} F)^{-1} F' R^{-1} y \) is the generalized least squares estimation. \(F = n \times k \) model matrix.
- \(R \) is the correlation matrix, \(R_{i,j} = \phi(x_i - x_j, \theta) \).
- \(r(x) = (\phi(x - x_1, \theta), \ldots, \phi(x - x_n, \theta))' \) = vector of correlation between prediction points and observed points.
- \(\hat{y}(x_i) = y_i \), interpolating property.
Kriging Modeling: Estimation

• Maximum Likelihood Estimation:

\[
\min_{\theta \geq 0} \left\{ n \log (\hat{\sigma}^2) + \log (\det(R)) \right\}.
\]

where \(\hat{\sigma}^2 = (y - F\hat{\beta})' R^{-1} (y - F\hat{\beta}) / n. \)

• Numerical Stability: R is ill-conditioned, especially for large \(n \) and/or \(k \) (=input dimension) (Peng and Wu, 2010b).

• Computational Complexity: matrix inversion \(O(n^3) \); many optimization iterations are needed; in each iteration matrix inversion is computed.
Examples of Kriging Models

• Computer experiments with two levels of accuracy
• Computer experiments with quantitative and qualitative factors
• Simulation codes with calibration parameters
Example: Designing Cellular Heat Exchangers for an Electronic Cooling Application

Important Factors:
- Flow-rate of Air
- Inlet Temp of Air
- Conductivity of Solid
- Temp of Upper Wall

Response: Total Heat Transfer Rate from Solid to Air

Courtesy of Systems Realization Lab at Georgia Tech
Heat Transfer Analysis

HE: Detailed Computer Simulation – Finite Element Analysis (FEA) Method

- Using the computational fluid dynamic solver FLUENT

- Problem domain is divided into thousands or millions of elements.

- Each run requires hours to days to complete.
Heat Transfer Analysis

LE: Approximate Computer Simulation — Finite Difference Method

- The finite difference technique is a numerical technique for solving 2- or 3-D steady state heat transfer problems.
- Temperature distribution approximated via numerical solution of 3D heat transfer equations using forward or central difference methods.
- Each run takes minutes to complete.
- Less accurate than FEA.
High-accuracy and Low-accuracy Experiments

• **Paradigm shift**: single experiment \rightarrow multiple experiments with different levels of accuracy.

• A generic pair: **high-accuracy experiment** (HE) and **low-accuracy experiment** (LE).

• HE is more **accurate** but more **expensive** than LE.

• Examples:
 – physical experiment vs. computer simulation
 – detailed computer simulation vs. approximate computer simulation

• 1. **Modeling**: How to model and analyze data from HE and LE?

 2. **Experimental design**: How to plan HE and LE?
Frequentist Approach in Qian et al. (2006, ASME)

- \(\mathbf{x} = (x_1, \ldots, x_k) \): design variables.
 - \(D_l \) and \(D_h \): sets of design points \((\mathbf{x}_i)\) for LE and HE with \(D_h \subset D_l \).
 - \(y_h \) and \(y_l \): outputs from HE and LE.

- **Base Surrogate Model**: \(y_l = \beta_{l0} + \sum_j \beta_{lj} \mathbf{x}_i + \varepsilon_l(\mathbf{x}_i), \; \mathbf{x}_i \in D_l \),
 \(\varepsilon_l \sim \text{GP}(0, \sigma_l^2, \phi_l) \).

- **Adjustment Model**: \(y_h(\mathbf{x}_i) = \rho(\mathbf{x}_i)y_l(\mathbf{x}_i) + \delta(\mathbf{x}_i), \; \mathbf{x}_i \in D_h \),
 - scale adjustment: \(\rho(\mathbf{x}_i) = \rho_0 + \sum_j \rho_j x_{ij} \);
 - location adjustment: \(\delta \sim \text{GP}(\delta_0, \sigma_\delta^2, \phi_\delta) \).

- **Fitting**:
 \[
 \begin{align*}
 \text{Base surrogate model: } & \widehat{y}_l \\
 \text{Adjustment model: } & \widehat{\rho} \text{ and } \widehat{\delta}
 \end{align*}
 \]
 \(\implies \text{Final surrogate model: } \widehat{y}_h = \widehat{\rho}\widehat{y}_l + \widehat{\delta} \).

- **Desirable property**: \(\widehat{y}_h \) interpolates \(y_h(\mathbf{x}_i), \mathbf{x}_i \in D_h \) if HE is deterministic.
Bayesian Approach in Qian and Wu (2008, Technometrics)

- Use flexible Bayesian hierarchical Gaussian process model (BHGP).
- Provide more flexible adjustment. Can accommodate parameter uncertainty and measurement error of HE.
- BHGP:
 - Base Surrogate Model: \(y_l = \beta_{l0} + \sum_j \beta_{lj} x_i + \varepsilon_l(x_i), \ x_i \in D_l, \)
 \(\varepsilon_l \sim GP(0, \sigma^2_l, \phi_l). \)
 - Flexible Adjustment Model:
 \[
 y_h(x_i) = \rho(x_i)y_l(x_i) + \delta(x_i) + \varepsilon(x_i), \ x_i \in D_h,
 \]
 scale adjustment \(\rho \sim GP(\rho_0, \sigma^2_{\rho}, \phi_{\rho}), \)
 location adjustment \(\delta \sim GP(\delta_0, \sigma^2_{\delta}, \phi_{\delta}), \)
 \(\varepsilon(x) \sim N(0, \sigma^2_{\varepsilon}). \ \varepsilon = 0 \iff \) no measurement error.
Model Parameters and Priors for the BHGP Model

- **Model parameters**
 - Mean parameters $\theta_1 = (\beta_l, \rho_0, \delta_0)$.
 - Variance parameters $\theta_2 = (\sigma^2_l, \sigma^2_\rho, \sigma^2_\delta, \sigma^2_\varepsilon)$.
 - Correlation parameters $\theta_3 = (\phi_l, \phi_\rho, \phi_\delta)$;
 complexity *increases* with the no. of input factors (\therefore dim = $3k$).

- **Priors**
 - Normal for θ_1.
 - Inverse-gamma for θ_2.
 - Gamma for θ_3.
Computational Algorithm

1: Fitting Correlation Parameters θ_3

Solve a *stochastic program*

$$\max_{\phi_\rho, \phi_\delta} L_2 = E_{p(\tau_1, \tau_2)} f(\tau_1, \tau_2)$$

by the Sample Average Approximation (SAA) algorithm.

2: Markov Chain Monte Carlo (MCMC) Sampling from $p(\theta_1, \theta_2 | y_l, y_h, \theta_3)$

- Rationale: Conditional distributions for θ_1, θ_2 are in closed form, but not for θ_3 given θ_1, θ_2.
- It is not a *fully* Bayesian procedure (to save computation for θ_3).
Posterior density of ρ_0, δ_0, σ^2_ρ, σ^2_δ
Location and Scale Change

- **Symmetric** location change δ_0 with center at 0.85.
- Scale adjustment ρ_0 has multi modes, which may be explained by *multiple* laws.
Calibration of Computer Models

• Calibration = process of fitting a computer model to observed data by adjusting input parameters of the model (Kennedy and O’Hagan, 2001).

• Computer model: \(y_c = \eta(x, \theta) \),

• Physical model: \(y_p = \rho \eta(x, \theta) + \delta(x) + \varepsilon \),
 \(- \theta = \text{calibration parameters}, \delta(x) = \text{model inadequacy}, \rho = \text{adjustment term}.\)

• Example 1-Nuclear Accident: Use data on reactor fire to calibrate a plume model of radioactive deposition. Source term and deposition velocity = calibration parameters.

GP with quanti/quali factors: Data Center Thermal Distribution

Courtesy of IBM T. J. Watson Research Center
Configuration Variables for the Data Center Example

- Five quanti factors: rack temperature rise, rack power, diffuser angle, diffuser flow rate, ceiling height.
- Three quali factors: diffuser location, hot-air return-vent location, power allocation.
GP Models with Quantitative and Qualitative Factors
(Qian, H. Wu, C. F. J. Wu 2008, Technometrics)

- Input factors: \(w = (x, z) \); \(I \) quantitative factors: \(x = (x_1, \ldots, x_I) \); \(J \) qualitative factors: \(z = (z_1, \ldots, z_J) \); response value: \(y(w) \).

- Build a single GP model for both \(x \) and \(z \). Borrow strengths from all the observations:

\[
y(w) = \sum_{m} \beta_m f_m(w) + \epsilon(w).
\]

- How to specify \(f_m \)? Use regression modeling involving \(x \) and \(z \).
- How to specify \(\epsilon \) (especially its correlation structure)?
- Related work: Bayesian hierarchical GP models (Han et al., 2009).
- Corresponding designs: Sliced space-filling designs (Qian and Wu, 2009, Biometrika).
Construction of Correlation Functions for $\varepsilon(w)$

- Consider one quali factor z_1 with m_1 levels 1, \ldots, m_1.
 For $u = 1, \ldots, m_1$, $\varepsilon_u(x) = \varepsilon(x, u)$.

- Idea: envision a mean-zero multivariate process $(\varepsilon_1(x), \ldots, \varepsilon_{m_1}(x))' = A\eta(x)$.

- A: an $m_1 \times m_1$ matrix with unit row vectors.

- Elements of $\eta(x)$: m_1 independent processes with a common variance σ^2.

- For two input values $w_1 = (x_1, z_{11})$ and $w_2 = (x_2, z_{12})$,

$$\text{cor}(\varepsilon(w_1), \varepsilon(w_2)) = \tau_{z_{11}, z_{12}} K_\phi(x_1, x_2)$$

 - $K_\phi(x_1, x_2)$: correlation between x_1 and x_2.
 - $T_1 = AA^t$: an $m_1 \times m_1$ correlation matrix for z_1 (i.e., positive definite matrix with unit diagonal elements).
Alternatives to Kriging

1. Tweaking of kriging:
 – covariance matrix tapering (Kaufman et al., 2008),
 – rank reduction (Cressie-Johannesson, 2008),
 – regularized kriging (Peng-Wu, 2010a)

2. Adding penalty to likelihood (Li-Sudjianto, 2005): another approach to regularization.
Alternatives to Kriging (cont.)

3. Completely different ideas:

- Radial basis interpolation functions (Buhmann, 2004)

- Regression-based inverse distance weighting (Joseph and Kang, 2009): a fast interpolator

- Overcomplete basis surrogate method (OBSM) (Chen, Wang and Wu, 2010): an approximator, not interpolator
Inverse Distance Weighting (IDW)

- Inverse Distance Weighting (Shepard, 1968):

\[
\hat{y}(\mathbf{x}) = \frac{\sum_{k=1}^{n} w_k(\mathbf{x}) y_k}{\sum_{i=1}^{n} w_i(\mathbf{x})}.
\]

- \(w_i(\mathbf{x}) = \frac{1}{d(\mathbf{x}, \mathbf{x}_i)^2} \).
- \(d(\mathbf{x}, \mathbf{x}_i) = \left\{ \sum_{j=1}^{p} (x_j - x_{i,j})^2 \right\}^{1/2} \).

- Simple computation but poor prediction.
Regression-Based Inverse Distance Weighting (RIDW)

- Add regression part to IDW (Joseph and Kang, 2009):

\[\hat{y}(\mathbf{x}) = \mu(\mathbf{x}; \boldsymbol{\beta}) + \frac{\sum_{k=1}^{n} w_k(\mathbf{x}) e_k}{\sum_{i=1}^{n} w_i(\mathbf{x})} \]

- \(\mu(\mathbf{x}_k; \boldsymbol{\beta}) \) = mean part; can be linear, nonlinear, nonparametric.

- \(e_k = y_k - \mu(\mathbf{x}_k; \boldsymbol{\beta}) = y_k - \mu_k \).

- \(w_i(\mathbf{x}) = \frac{\exp\{-d^2(\mathbf{x}, \mathbf{x}_i)\}}{d^2(\mathbf{x}, \mathbf{x}_i)} \). (faster convergence than IDW)

- \(d(\mathbf{x}, \mathbf{x}_i) = \sqrt{\sum_{j=1}^{p} \theta_j (x_j - x_{i,j})^2} \).
Comparisons Between RIDW and Kriging

Standardized RMSPE

CPU time in simulation
Design of Experiments with HE and LE

• Key to efficiently allocate resources and acquire information from HE and LE.

• $\mathbf{x} = (x_1, \ldots, x_k)$: design variables in $[0, 1]^k$.

 D_l: set of design points (\mathbf{x}_i) for LE. D_h: set of design points (\mathbf{x}_i) for HE.

• Three principles for constructing D_l and D_h:

 Economy: The size of D_h is less than the size of D_l.

 Nested relationship: D_h is a subset of D_l.

 Space-filling: Points in D_h and D_l achieve uniformity in low dimensions.

• How to construct multiple experiments with respect to multiple requirements?

• New issue in design of experiments: traditional methods deal almost exclusively with experiments with one level of accuracy.
Nested Space-Filling Designs

Ideas:

1. Use a *special* orthogonal array to construct an OA-based Latin hypercube design for D_l.

2. Choose D_h to be a *carefully* selected subset of D_l with two-dimensional balance.

Need to use simple Galois field theory.
Nested Orthogonal Array

Let A be an $OA(N_1, k, s_1, t)$. Suppose A has a subarray with N_2 rows, denoted by A_1, and there is a projection ϕ that collapse the s_1 levels of A into s_2 levels. Further suppose A_1 is an $OA(N_2, k, s_2, t)$ if the s_1 levels of its entries are collapsed to s_2 levels according to ϕ. Then an array with this structure is called a nested orthogonal array.
Construction of Nested Space-Filling Design

• The nested orthogonal array $A_2 \subset A_1$ does not automatically generate nested space-filling designs if the s_1 levels are arbitrarily labeled.

• In constructing OA-based Latin hypercube D_1 using A_1, the s_1 levels of A_1, represented by the polynomials of degree $u_1 - 1$ or lower, have to be first labeled as $1, \ldots, s_1$.

• The subset D_2 of D_1 corresponding to A_2 may not have good space-filling properties.

• Care should be taken in labeling the levels to ensure that D_2 achieves stratification in two dimensions.

• The s_1 levels of A_1 must be labeled in such a way that the group of levels that are mapped to the same level should form a consecutive subset of $1, \ldots, s_1$.
An Example of Nested Space-Filling Design

- Five factors \(\mathbf{x} = (x_1, x_2, x_3, x_4, x_5) \) taking values in the unit hypercube \([0, 1]^5\).
- Use the orthogonal array in Table 1 to construct an OA-based Latin hypercube \(D_1 \) for \(x_1-x_5 \).
- Choose a subarray \(D_2 \) of \(D_1 \) consisting of the 16 points in \(D_1 \) corresponding to runs 1-4, 9-12, 17-20, 25-28 of the array in Table 1.
The Underlying Nested Orthogonal Array

<table>
<thead>
<tr>
<th>Run #</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run #</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>34</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>35</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>36</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>37</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>38</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>43</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>44</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>46</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>47</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Run #</td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>22</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>23</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>24</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>26</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>28</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>29</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>30</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run #</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>50</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>51</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>53</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>54</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>55</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>56</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>57</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>58</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>59</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>61</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>62</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>63</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 1. An $OA(64,5,8,2)$ that contains an $OA(16,5,4,2)$, i.e., the submatrix consisting of runs 1-4, 9-12, 17-20, 25-28 becomes an $OA(16,5,4,2)$ after some suitable level collapsing
2-D Projection of D_1
2-D Projection of D_2
Conclusions

• Computer simulations have become popular in studying complex systems.
• Statistics-based meta (surrogate, approximate) models are useful companions to simulations.
• A rich class of problems: modeling, estimation, prediction, calibration, computations, design.
• Kriging is popular for building meta models but can have problems with numerical instability.
• Effective alternatives to kriging have emerged in recent work. Cross-disciplinary in nature.
Step 1: Fitting Correlation Parameters θ_3

- Obtain posterior mode $\hat{\theta}_3 = (\hat{\phi}_l, \hat{\phi}_\rho, \hat{\phi}_\delta)$ by solving

\[(P) : \max_{\phi_l, \phi_\rho, \phi_\delta} p(\theta_3 | y_h, y_l).\]

- (P) is equivalent to two separable problems:
 - (P_1): a non-linear program for ϕ_l,
 - (P_2): a problem for ϕ_ρ and ϕ_δ. Its objective function involves an integral.

- $(P_2) \iff$ a stochastic program (P'_2): \(\max_{\phi_\rho, \phi_\delta} L_2 = E_{p(\tau_1, \tau_2)} f(\tau_1, \tau_2). \)

- Solve P'_2 by the Sample Average Approximation (SAA) algorithm:
 1. Generate random samples (τ^s_1, τ^s_2) from $p(\tau_1, \tau_2), s = 1, \cdots, S$.
 2. Solve the approximate problem:

\[(\tilde{\phi}_\rho, \tilde{\phi}_\delta) = \arg\max_{\phi_\rho, \phi_\delta} [\tilde{L}_2 = \frac{1}{S} \sum_{s=1}^{S} f(\tau^s_1, \tau^s_2)].\]
Step 2: Markov Chain Monte Carlo (MCMC)
Sampling from $p(\theta_1, \theta_2| y_l, y_h, \theta_3)$

- Some full conditional distributions for θ_1, θ_2 are not regular:
 - $p(\beta_l|y_l, y_h, \theta_3, \bar{\beta}_l) \sim \text{Normal}$,
 - $p(\rho_0|y_l, y_h, \theta_3, \bar{\rho}_0) \sim \text{Normal}$,
 - $p(\delta_0|y_l, y_h, \theta_3, \bar{\delta}_0) \sim \text{Normal}$,
 - $p(\sigma^2_l|y_l, y_h, \theta_3, \bar{\sigma}^2_l) \sim \text{IG}$,
 - $p(\sigma^2_\rho|y_l, y_h, \theta_3, \bar{\sigma}^2_\rho) \sim \text{IG}$,
 - $p(\tau_1, \tau_2|y_l, y_h, \tau_1, \tau_2) \propto \frac{1}{\tau_1^{\alpha_\delta + \frac{3}{2}}} \frac{1}{\tau_2^{\alpha_\epsilon + 1}} \exp\left\{ - \frac{1}{\tau_1} \left(\frac{\gamma_\delta}{\sigma^2_\rho} + \frac{(\delta_0 - u_\delta)^2}{2v_\delta \sigma^2_\rho} \right) - \frac{\gamma_\epsilon}{\tau_2 \sigma^2_\rho} \right\} \frac{1}{|M|^{1/2}} \cdot \exp\left\{ - \frac{(y_h - \rho_0 y_{l1} - \delta_0 1_{n_1})^t M^{-1} (y_h - \rho_0 y_{l1} - \delta_0 1_{n_1})}{2 \sigma^2_\rho} \right\}$
 - $\tau_1 = \sigma^2_\delta / \sigma^2_\rho$, $\tau_2 = \sigma^2_\delta / \sigma^2_\epsilon$

- Use the Metropolis-within-Gibbs algorithm.
The General Case

- Consider J qualitative factors z_1, \ldots, z_J with z_j having m_j levels $1, \ldots, m_j$.
- For two input values $w_1 = (x_1, z_{11})$ and $w_2 = (x_2, z_{12})$,

$$\text{cor}(\varepsilon(w_1), \varepsilon(w_2)) = \left[\prod_{j=1}^{J} \tau_{j,z_{j1},z_{j2}} \right] \exp \left\{ -\sum_{i=1}^{I} \phi_i (x_{i1} - x_{i2})^2 \right\}.$$

- T_j: an $m_j \times m_j$ correlation matrix for z_j (i.e., a positive definite matrix with unit diagonal elements).
- This correlation function has a product form.
- Assume the elements of $T_j \geq 0$ for deterministic computer experiments.
Some Restrictive Forms of T_j

Consider two input values $w_1 = (x_1, z_1)$ and $w_2 = (x_2, z_2)$ with responses $y(w_1)$ and $y(w_2)$. Recall that τ_{j,z_1,z_2} is the correlation between z_{j1} and z_{j2}.

1. Isotropy correlation function: $\tau_{j,z_1,z_2} = \exp\{-\theta_j I[z_{j1} \neq z_{j2}]\}$.

 For w_1 and w_2,

 $$\text{cor}(\varepsilon(w_1), \varepsilon(w_2)) = \exp \left\{ -\sum_{i=1}^{I} \phi_i (x_{i1} - x_{i2})^2 - \sum_{j=1}^{J} \theta_j I[z_{j1} \neq z_{j2}] \right\}$$

 Euclidean distance for x_i; 0-1 distance for z_j.

2. Multiplicative correlation function:

 $$\tau_{r,s} = \exp\{-\theta_{r,s}\} = \exp\{-\theta_r + \theta_s I[r \neq s]\}. \quad (1)$$

4. Correlation functions for ordinal qualitative factors.
Estimation

• Model parameters:
 – mean parameters $\beta = (\beta_1, \ldots, \beta_p)$.
 – variance parameter σ^2.
 – correlation parameters $\phi = (\phi_1, \ldots, \phi_I)^t$, and $T = \{T_1, \ldots, T_J\}$.

• The estimation iterates between

 Regression fitting: Given $\hat{\phi}$ and \hat{T}, estimate β and σ^2.

 Simple!

 Correlation fitting: Given $\hat{\beta}$ and $\hat{\sigma}^2$, let $U = (u_1, \ldots, u_n)$ with

 $u_i = [y_i - \hat{\beta}^t f(w_i)]/\hat{\sigma}$ and then fit a GP with mean zero and variance one to
 the transformed data U.