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Recently there has been much work on sparse linear regression modeling
in the d >> n modern theoreical paradiagm where the true model is assumed
to be sparse (either hard or weak). In particular, upper bounds have been
obtained by various authors for Lasso and variants in terms of `2 estimation
and L2 prediction errors.

In this talk, we present sharp minimax rate results of convergence for
estimation of the parameter vector `2-norm and L2- prediction error, among
other results. We consider the standard Gaussian linear regression model
with where we assume the number of parameters d is greater than the num-
ber of parameters n (ie. high-dimensional scaling). Sharp minimax rates are
found for estimation of the parameter vector β in `2-norm and L2- predic-
tion error, assuming that the true parameter β∗ belongs to a weak `q-ball,
with ‖β∗‖qq ≤ Rq for some q ∈ [0, 1] (hard sparsity when q = 0). We show
that under suitable regularity conditions on the design matrix X, the min-
imax error in squared `2-norm and prediction norm scales as Rq( log d

n )1−
q
2 .

In addition, we provide lower bounds on rates of convergence for general
`p norm (for all p ∈ [1,+∞], p 6= q). Our proofs of the lower bounds are
information-theoretic in nature, based on Fano’s inequality and results on
the metric entropy of the `q-ball (‖β‖qq ≤ Rq). Matching upper bounds were
derived by direct analysis of the solution to the least-squares algorithm over
the `q-ball (‖β‖qq ≤ Rq). We prove that the conditions on X required by
optimal algorithms are satisfied with high probability by broad classes of
non-i.i.d. Gaussian random matrices, for which RIP or other sparse eigen-
value conditions are violated. For q = 0, `1-based methods (Lasso and
Dantzig selector) achieve the minimax optimal rates in `2 error, but require
possibly stronger regularity conditions on the design than the non-convex
optimization algorithm used to determine the minimax upper bounds.

(This talk is based on joint work with Garvesh Raskutti and Martin
Wainwright at UC Berkeley.)
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